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•Supervised vs. unsupervised approaches

•Partial Least Squares (PLS)

•Comparison with other unsupervised techniques
• Principal component analysis, Canonical correlation analysis
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• When labels are not reliable
• In psychiatry, disorders are classified according to criteria from the DSM and ICD
• However, clinical presentations are heterogeneous within a diagnostic category
• There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors 

across diagnostic categories, and high comorbidity among disorders

When is unsupervised learning useful?
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• When labels are not reliable
• In psychiatry, disorders are classified according to criteria from the DSM and ICD
• However, clinical presentations are heterogeneous within a diagnostic category
• There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors 

across diagnostic categories, and high comorbidity among disorders

• Unsupervised learning can help uncover underlying neurobiological 
mechanisms that transcend diagnostic boundaries

When is unsupervised learning useful?



Outline

• Supervised vs. unsupervised approaches

• Partial Least Squares (PLS)
•Goal 
• PLS step by step
• Interpreting results

• Combining supervised & unsupervised learning



PLS variant X Y
Behavior PLS Imaging measures Behavior measures
PLS Discriminant Analysis Imaging measures Group labels

Multi-Block PLS Imaging measures Behavior + 
Conditions (+ …)

Task / Spatiotemporal PLS Brain activity x Timeseries Contrasts / 
Task conditions

Seed PLS Whole brain activity Seed activity

•PLS finds optimal associations between 2 matrices (X and Y)

Partial least squares (PLS)



Goal = Find the shared information 
between the 2 modalities

Imaging data Behavior data
= Find imaging patterns optimally

related to behavioral patterns

PLS finds low-dimensional 
latent variables showing 

maximal covariance
Cov ( , ) = max

Depression Mania IQ Verbal 
memory

Subject 1 12 3 82 12

Subject 2 4 6 114 25

Subject 3 6 2 108 19

Subject 4 3 7 120 21

Subject 5 10 2 95 16

Partial least squares (PLS)



weighted pairs of vectors

PLS finds

whose projection
on original data yields 
maximal covariance
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Cross-covariance 
matrix
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PLS |   Singular value decomposition

• Rank of cross-covariance matrix 
determines the number of components

• Components are ordered by effect size
• Amount of covariance explained by each

component

𝑅

𝑈 𝑉#𝑆
𝑠! ∶ singular value 

of component i

=
𝑠%&

∑𝑠&

• Components are orthogonal
• Each component explains a different part of the covariance between imaging and 

behavior data



PLS |   Analysis flowchart

Compute PLS 
betweeen imaging 
and behavior data

Permutation testing Bootstrapping Cross-validation

Is there a relationship 
between imaging and 

behavior data?

Which components are 
significant?

Which variables drive 
these components and 

are they robust?

Which components are 
generalizable?



• Which components are significant?
• Permute rows (subjects) in 𝑌

𝑝 =
1 + ∑'()* 𝑠𝑝%' ≥ 𝑠%

1 + 𝐶

𝑠$

C = number of permutations

• Distribution of 
singular values 
under the null
hypothesis

𝑋𝑝 𝑌𝑝

Imaging data Behavior data

×

subject 98
subject 25
subject 7
subject 19
subject 52 

…

subject 1
subject 2
subject 3
subject 4
subject 5

…

PLS |   Permutation testing

=

𝑅𝑝

𝑈𝑝 𝑉𝑝#𝑆𝑝
𝑠𝑝!" ∶ permuted 
singular values 
of component i



• Which variables characterize these components?
• Loadings can either be :

PLS |   Loadings
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• Which loadings are stable 
(irrespective of the sample) ?
• Sample rows (subjects) in 𝑋 and 𝑌

with replacement

• Bootstrap ratio:    
(!

)*((,!)
and

.!
)*(.,!)

• High loadings with low standard error
are considered stable

=
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𝑈𝑏 𝑉𝑏#𝑆𝑏

×
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subject 52 
…
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Imaging data Behavior data
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…

PLS |   Bootstrapping

𝑢𝑏! : bootstrapped 
behavior saliences 

of component i

𝑣𝑏! : bootstrapped 
imaging saliences 

of component i
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• Which components are 
generalizable to unseen data?

PLS |   Cross-validation
𝑋/0 𝑌/0

Imaging data Behavior data

𝑋/1 𝑌/1

correlation
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• Clinical symptoms 
(e.g., 
hallucinations)

• Cognitive 
measures (e.g., 
vocabulary)

• Personality 
measures (e.g., 
impulsivity)

UCLA Consortium for 
Neuropsychiatric Phenomics dataset

224 subjects 
(psychiatric patients & controls)

Hallucinations Vocabulary Impulsivity

Subject 1 12 33 15

Subject 2 4 26 11

Subject 3 6 29 21

Kebets et al. 
Biol Psych (2019)

+ 19 subcortical ROIs 
(Fischl et al., 2002)

400 cortical ROIs
(Schaefer et al., 2018)

PLS |   Illustration



r = 0.78 r = 0.83 r = 0.73
Component 1 Component 3Component 2

Healthy ADHD Bipolar Schizophrenia Schizoaffective

• 3 significant components found using permutation testing (1’000 permutations)

Kebets et al. 
Biol Psych (2019)PLS |   Components’ significance
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Kebets et al. 
Biol Psych (2019)

• Behavior loadings (structure 
coefficients)

• Top 20 behavior loadings 
characterized by higher 
clinical symptoms
à General 
psychopathology

PLS |   Loadings



Kebets et al. 
Biol Psych (2019)

• RSFC loadings (structure 
coefficients)

• With greater psychopathology
• FC within the Somatomotor

network is decreased
• The Dorsal attention, Somatomotor

and Visual networks show 
increased FC with the Default, 
Control, Salience and Subcortical 
networks
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PLS |   Loadings



Kebets et al. 
Biol Psych (2019)

• Bootstrap resampling (500 
samples)
• Bootstrap estimation of loadings’ 

standard errors

• Bootstrap ratios   = 

• Bootstrap ratios averaged 
within/between networks

• Bootstrap ratios (≈ z-scores) converted 
to p-values & FDR-corrected
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PLS |   Loadings’ robustness



Kebets et al. 
Biol Psych (2019)

• Bootstrap resampling (500 
samples)
• Bootstrap estimation of loadings’ 

standard errors

• Bootstrap ratios   = 

• Bootstrap ratios averaged 
within/between networks

• Bootstrap ratios (≈ z-scores) converted 
to p-values & FDR-corrected
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PLS |   Loadings’ robustness



Component 1 Component 3Component 2

• The 3 components estimated from 80% successfully generalized to the remaining 20%

r = 0.15 (mean)
p = 0.001-0.002 (range)

r = 0.12 (mean)
p = 0.002-0.004 (range)

r = 0.18 (mean)
p = 0.002-0.002 (range)

Healthy ADHD Bipolar Schizophrenia Schizoaffective

Kebets et al. 
Biol Psych (2019)PLS |   Cross-validation



•Supervised vs. unsupervised approaches

•Partial Least Squares correlation (PLSC)

•Comparison with other unsupervised techniques
• Principal component analysis, Canonical correlation analysis

Outline



Principal component analysis (PCA)
• Principal component analysis (PCA) creates a set of new variables, 

called principal components, which are linear combinations of the 
original variables in X

• Principal components are mutually uncorrelated and capture unique, 
non-overlapping portions of variance

• Principal components are ordered by the magnitude of their squared 
singular values, which are proportional to the portion of variance 
accounted for by the component  



PLS  vs. PCA
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• Conceptually, canonical correlation analysis is very similar to PLS
• CCA aims to create pairs of new variables, called canonical variates, which are 

linear combinations of the original variables (𝑋 and 𝑌), that are maximally 
correlated

• Mathematically, there’s an extra step in CCA
• 𝑋 and 𝑌 are first adjusted for within-set correlations before computing the cross-

correlation matrix
• However, often p > n, so the matrix inverse 𝑋.𝑋 /) doesn’t exist because 𝑋.𝑋 is 

rank deficient
• Therefore, dimensionality reduction is usually applied before computing CCA

Canonical correlation analysis (CCA)



PLS vs. CCA
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• myPLS - MATLAB - Daniela Zöller & Valeria Kebets
• https://github.com/danizoeller/myPLS
• Behavior PLS with 1D, 2D, 3D imaging data

• PLS - MATLAB - Rotman Baycrest
• https://www.rotman-baycrest.on.ca/index.php?section=84
• Behavior PLS, Seed PLS, Task PLS with 3D, 4D imaging data

• PYLS - Python - Ross Markello
• https://github.com/rmarkello/pyls
• Behavior PLS, Mean-centered PLS, PLS regression

PLS | Implementation

àà POSTER 1111

https://github.com/danizoeller/myPLS
https://www.rotman-baycrest.on.ca/index.php%3Fsection=84
https://github.com/rmarkello/pyls
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Stay safe & 
thank you for your attention !

Memory 
Network
Program

Dimitri Van 
De Ville

B.T. Thomas Yeo
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