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» Supervised vs. unsupervised approaches

» Partial Least Squares (PLS)

» Comparison with other unsupervised techniques

» Principal component analysis, Canonical correlation analysis



Supervised vs. unsupervised learning
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When is unsupervised learning useful?

* When labels are not reliable
* In psychiatry, disorders are classified according to criteria from the DSM and ICD
- However, clinical presentations are heterogeneous within a diagnostic category

» There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors
across diagnostic categories, and high comorbidity among disorders



When is unsupervised learning useful?
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When is unsupervised learning useful?

* When labels are not reliable
* In psychiatry, disorders are classified according to criteria from the DSM and ICD
- However, clinical presentations are heterogeneous within a diagnostic category

» There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors
across diagnostic categories, and high comorbidity among disorders

 Unsupervised learning can help uncover underlying neurobiological
mechanisms that transcend diagnostic boundaries
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- Partial Least Squares (PLS)



Partial least squares (PLS)

* PLS finds optimal associations between 2 matrices (X and Y)

PLS variant X Y
Behavior PLS Imaging measures Behavior measures
PLS Discriminant Analysis Imaging measures Group labels
Multi-Block PLS Imaging measures Behavior +

Conditions (+ ...)

Contrasts /

Task / Spatiotemporal PLS Brain activity x Timeseries Task conditions

Seed PLS Whole brain activity Seed activity




S
Partial least squares (PLS)

Verbal

Depression Mania Q memory

Goal = Find the shared information
between the 2 modalities

Subject 1 12 3 82 12

Subject 2 4 114 25

Subject 3 6 108 19

Subject 4 3 120 21

NN O

Subject 5 10 95 16

Imaging data Behavior data
= Find imaging patterns optimally
related to behavioral patterns

PLS finds low-dimensional
latent variables showing Cov ( ) ) = max

maximal covariance




PLS

PLS finds

weighted pairs of vectors

whose projection
on original data yields
maximal covariance
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PLS

Original data

Imaging Behavior
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PLS | Singular value decomposition “

x
o L] ’ \

 Rank of cross-covariance matrix n
determines the number of components .1...

S; : sinqular value

- Components are ordered by effect size 5 of component i

s

« Amount of covariance explained by each =
component

- Components are orthogonal

- Each component explains a difterent part of the covariance between imaging and
behavior data
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PLS | Analysis flowchart

Is there a relationship : Which variables drive :
L Which components are Which components are
between imaging and > o >| these components and > .
: significant? generalizable?
behavior data? are they robust?
Compute PLS

v
v

v

betweeen imaging Cross-validation

and behavior data

Permutation testing Bootstrapping




PLS | Permutation testing

Imaging data  Behavior data

« Which components are significant? ... subject 58
subject 2 subject 25

o 1 1 subjec subject
Permute rows (subjects) in Y upects Xp . Yp sukl))j]e o
subject 5 subject 52
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PLS | Loadings

* Which variables characterize these components?

» Loadings can either be :
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PLS | Bootstrapping

» Which loadings are stable
(irrespective of the sample) ?

« Sample rows (subjects) in X and Y
with replacement

Ui 14}
— and =
o(ubj) o(vbj)

* Bootstrap ratio:

» High loadings with low standard error
are considered stable

Imaging data  Behavior data
subject 16 subject 98
subject 1 subject 98
subject 33 subject 7
subject 33 X b X Yb subject 7

subject 1 subject 52

|
| 1
E -
Ub Y, VbT
“u

vb; : bootstrapped
imaging saliences
of component i

ub; : bootstrapped
behavior saliences
of component i



PLS ‘ Cross.validation Imaging data  Behavior data
Xir

Yir

* Which components are
generalizable to unseen data?

Cross-covariance || Singular value decomposition Latent variables
1 — T Behavioral RSFC
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PLS | Illustration

400 cortical ROIs
(Schaefer et al., 2018)

B SomMot A @ Sal/VentAttn A
E SomMot B [ Sal/VentAttn B

O Default A
Il Default B
l Default C
E Control A
Hl Control B
HE Control C

M Visual A
M Visual B
Bl Limbic A
O Limbic B

B DorsAttn A
Bl DorsAttn B
B TempPar

+ 19 subcortical ROIs
(Fischl et al., 2002)

subjects

<&

UCLA Consortium for
Neuropsychiatric Phenomics dataset
224 subjects

(psychiatric patients & controls)

Kebets et al.
Biol Psych (2019)

Hallucinations

Vocabulary

Impulsivity

Subject 1
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measures (e.g.,
impulsivity)




Kebets et al.
Biol Psych (2019)

PLS | Components’ significance

* 3 significant components found using permutation testing ('000 permutations)

Component 1 Component 2 Component 3
r=0.78 r=0.83 r=0.73

p=0.016

Behavioral composite scores
Behavioral composite scores
Behavioral composite scores

T T -10 T I T 1 T T T T T
-100 -50 0 50 100 -100 50 0 50 100 -100  -50 0 30 100
RSFC composite scores RSFC composite scores RSFC composite scores

Healthy ® ADHD @ Bipolar Schizophrenia  ® Schizoaffective



PLS | Loadings

* Behavior loadings (structure
coefficients)

« Top 20 behavior loadings
characterized by higher
clinical symptoms

- General
psychopathology

Mood lability -
Dysfunctional impulsivity
Impulsiveness -
Attentional impulsivity -
Anxiety -

Obsessive compulsiveness -
Nonplanning -
Interpersonal sensitivity
Depression A

ADHD symptoms -
Perceptual aberrations -
Somatization -

Schizoid ~

Social anhedonia A
Hypomanic

Short delay cued recall -
Long delay free recall -
Long delay cued recall -
Short delay free recall -
Control

Kebets et al.
Biol Psych (2019)

Behavior loadings



Kebets et al.
PLS ‘ Loa dings Biol Psych (2019)
TempPar HEas
« RSFC loadings (structure Default I o
coefficients)
Control I |
Limbic BRI
« With greater psychopathology Sal/VentrAttn “ __ e
- FC within the Somatomotor DorsAtn
network is decreased SomMot § | I
« The Dorsal attention, Somatomotor visual § A _
and Visual networks show Subcortical 25 BN e A A3 e Sk
increased FC with the Default, T :§ é é % % % E g
Control, Salience and Subcortical g 9 O~ g g & 7 53
networks 3 K

-0.5 M 1| 0.5
RSFC loadings



Kebets et al.
Biol Psych (2019)

PLS | Loadings’ robustness

TempPar S
* Bootstrap resampling (500 Default I!

samples)

» Bootstrap estimation of loadings’
standard errors

Control

Sal/VentrAttn Ii

: loading ; DorsAtt “ .
- Bootstrap ratios = 'Y i R | -
o(loading ;) SomMot H
* Bootstrap ratios averaged Vieus| HEEEE
within/between networks Subcortical m“

TempPar |
DorsAttn u
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» Bootstrap ratios (= z-scores) converted
to p-values & FDR-corrected

Visual
Subcortical EE:

Sal/VentrAttn g e
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RSFC loadings



Kebets et al.
Biol Psych (2019)

PLS | Loadings’ robustness

TempPar muE.

"
» Bootstrap resampling (500 | Il
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Behavioral subjects’ loadings

PLS | Cross-validation

Kebets et al.
Biol Psych (2019)

» The 3 components estimated from 80% successtully generalized to the remaining 20%

Component I

r = 0.15 (mean)
p = 0.001-0.002 (range)

Component 2

r = 0.12 (mean)

p = 0.002-0.004 (range)
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Component 3

r = 0.18 (mean)
p = 0.002-0.002 (range)

5 :
o ® . ® 3
@ 0 2. 09
0 ? xs I 4
[0 )8 P PO, L Yy {2 e
TP
ps ;
¢ ¢
..:
-5 4 .
-80 -40 0 40 80

RSFC subjects’ loadings

® Schizoaffective



R
Outline

» Comparison with other unsupervised techniques

» Principal component analysis, Canonical correlation analysis



Principal component analysis (PCA)

* Principal component analysis (PCA) creates a set of new variables,
called principal components, which are linear combinations of the
original variables in X

* Principal components are mutually uncorrelated and capture unique,
non-overlapping portions of variance

* Principal components are ordered by the magnitude of their squared
singular values, which are proportional to the portion of variance
accounted for by the component
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PLS VS. PCA

SVD of SVD of
covariance matrix covariance matrix
Y'X=USV X'X=USV
S(Tzlienges coefficierjts
Latent variables Component scores
Ly =XV Ly =XV

Ly:YU



Canonical correlation analysis (CCA)

 Conceptually, canonical correlation analysis is very similar to PLS

« CCA aims to create pairs of new variables, called canonical variates, which are

linear combinations of the original variables (X and Y), that are maximally
correlated

- Mathematically, there’s an extra step in CCA

« X and Y are first adjusted for within-set correlations before computing the cross-
correlation matrix

- However, often p > n, so the matrix inverse X'X ~1 doesn’t exist because X'X is
rank deficient

* Therefore, dimensionality reduction is usually applied before computing CCA



..
PLS VS. CCA

SVD of SVD of correlation

covariance matrix . matrix .

Y'X=USV' YY) 2Y'X(X'X)2 =US |4
P T
saliences canonical
variates
Latent variables Canonical scores
Ly =XV Ly =XV
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PLS | Implementation

* myPLS - MATLAB - Daniela Zoller & Valeria Kebets

» https://github.com/danizoeller/myPLS
 Behavior PLS with 1D, 2D, 3D imaging data —~ = POSTER 1111

« PLS - MATLAB - Rotman Baycrest

* https://www.rotman-baycrest.on.ca/index.php?section=84
 Behavior PLS, Seed PLS, Task PLS with 3D, 4D imaging data

* PYLS - Python - Ross Markello

« https://github.com/rmarkello/pyls
 Behavior PLS, Mean-centered PLS, PLS regression



https://github.com/danizoeller/myPLS
https://www.rotman-baycrest.on.ca/index.php%3Fsection=84
https://github.com/rmarkello/pyls
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