Undefined labels? Try unsupervised approaches!

OHBM2020 ML4NI Educational Course

Valeria Kebets

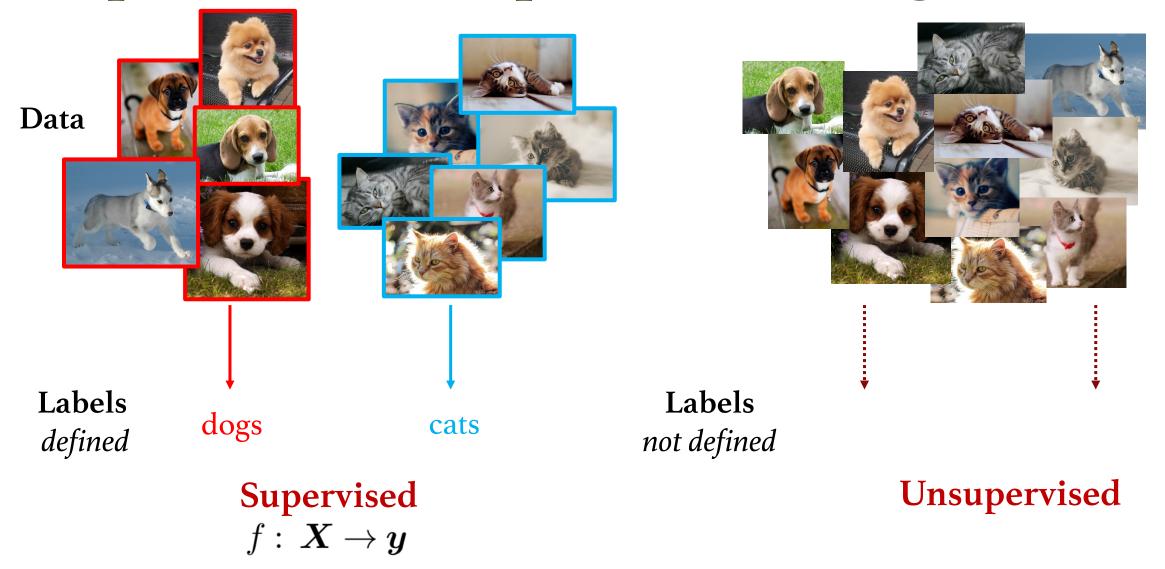
Outline

• Supervised vs. unsupervised approaches

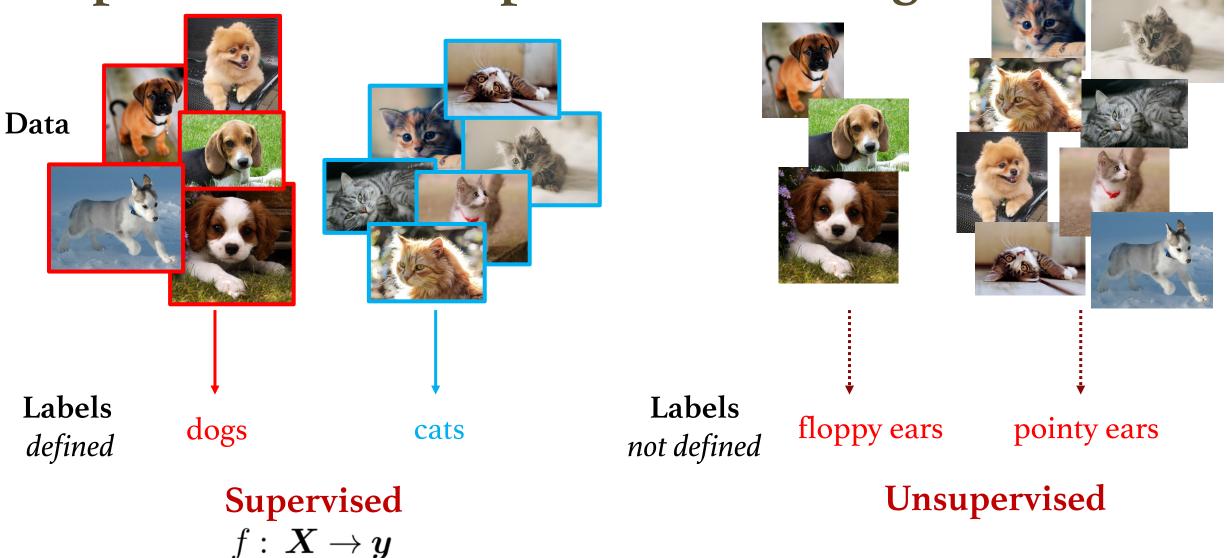
• Partial Least Squares (PLS)

- Comparison with other unsupervised techniques
 - Principal component analysis, Canonical correlation analysis

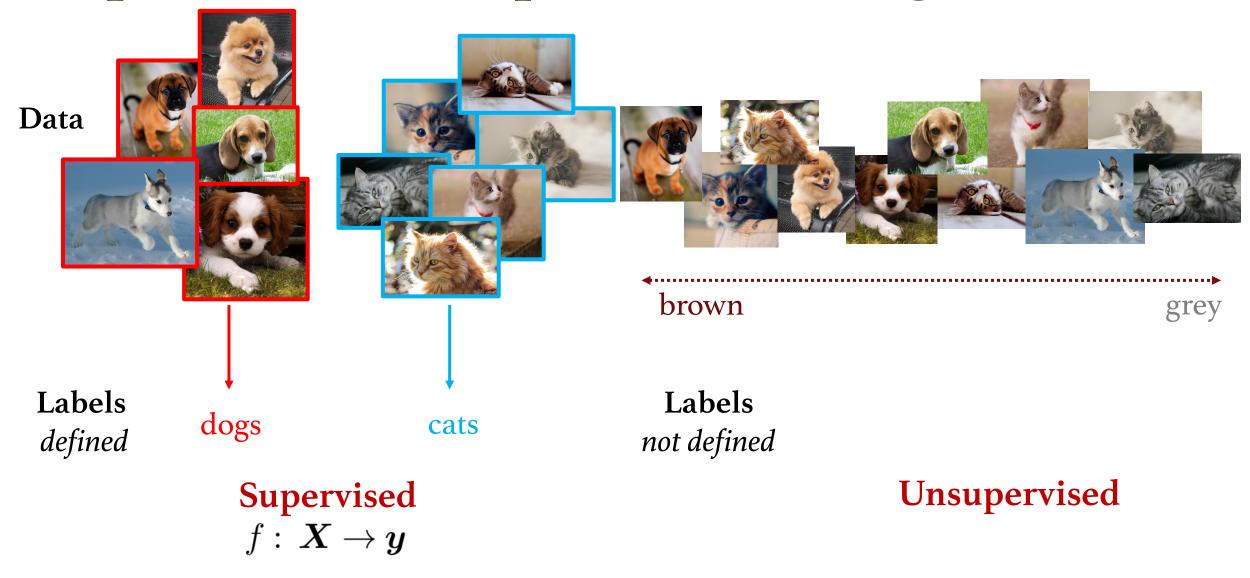
Supervised vs. unsupervised learning



Supervised vs. unsupervised learning



Supervised vs. unsupervised learning



When is unsupervised learning useful?

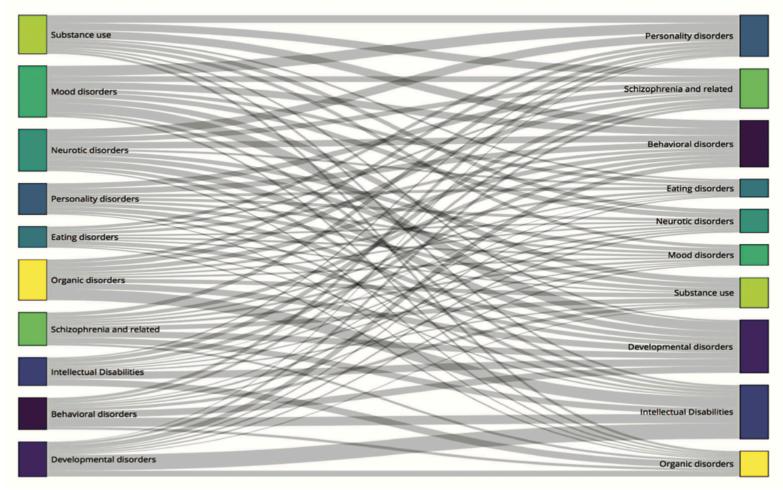
When labels are not reliable

- In psychiatry, disorders are classified according to criteria from the DSM and ICD
- However, clinical presentations are heterogeneous *within* a diagnostic category
- There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors *across* diagnostic categories, and high comorbidity *among* disorders

When is unsupervised learning useful?

prior-disorders

later-disorders



Plana-Ripoll et al. (2019)

When is unsupervised learning useful?

When labels are not reliable

- In psychiatry, disorders are classified according to criteria from the DSM and ICD
- However, clinical presentations are heterogeneous *within* a diagnostic category
- There is also overlap in clinical symptoms, cognitive deficits, & genetic risk factors *across* diagnostic categories, and high comorbidity *among* disorders
- Unsupervised learning can help uncover underlying neurobiological mechanisms that transcend diagnostic boundaries

Outline

• Partial Least Squares (PLS)

Partial least squares (PLS)

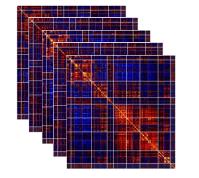
• PLS finds optimal associations between 2 matrices (X and Y)

PLS variant	X	Y
Behavior PLS	Imaging measures	Behavior measures
PLS Discriminant Analysis	Imaging measures	Group labels
Multi-Block PLS	Imaging measures	Behavior + Conditions (+)
Task / Spatiotemporal PLS	Brain activity x Timeseries	Contrasts / Task conditions
Seed PLS	Whole brain activity	Seed activity

Partial least squares (PLS)

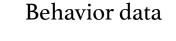
Goal = Find the **shared** information between the 2 modalities

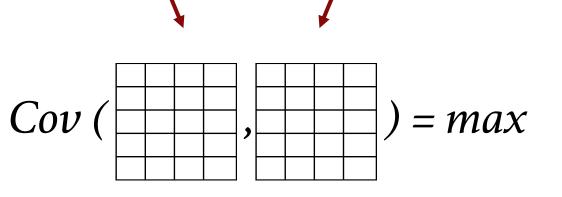
> = Find imaging patterns **optimally** related to behavioral patterns

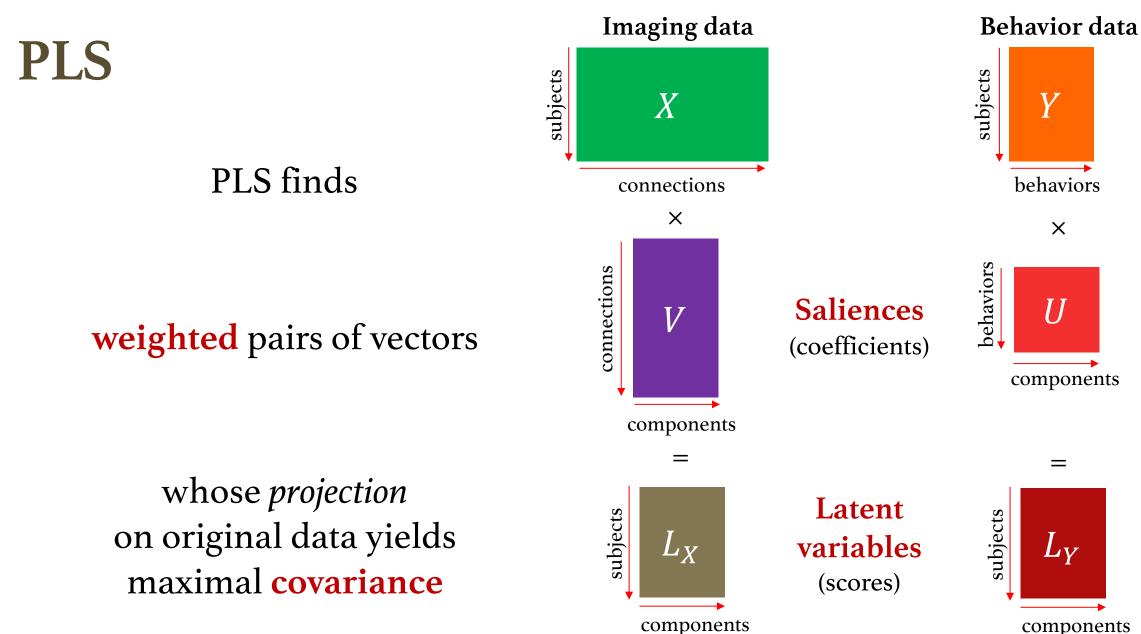


	Depression	Mania	IQ	Verbal memory
Subject 1	12	3	82	12
Subject 2	4	6	114	25
Subject 3	6	2	108	19
Subject 4	3	7	120	21
Subject 5	10	2	95	16

Imaging data

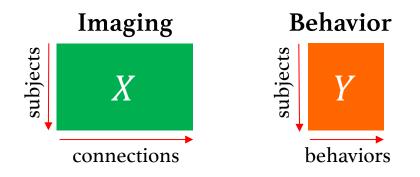


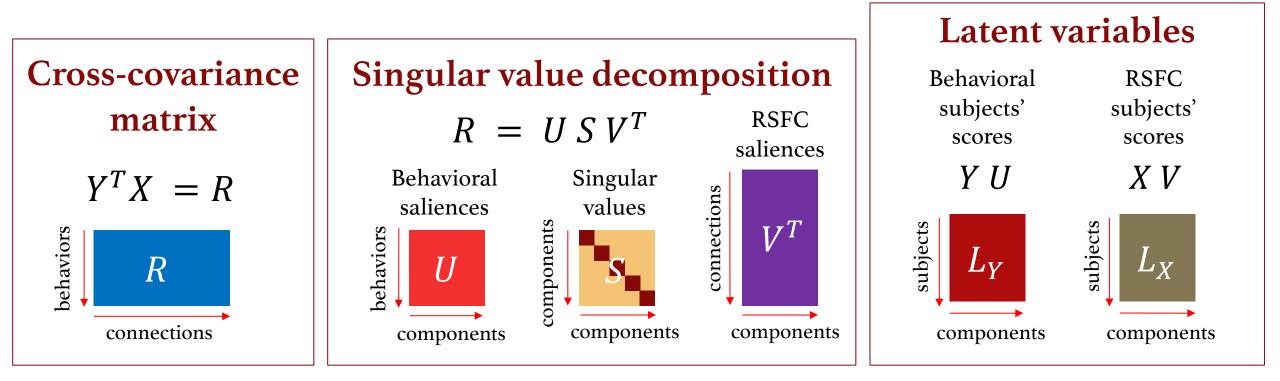




components

Original data





PLS | Singular value decomposition

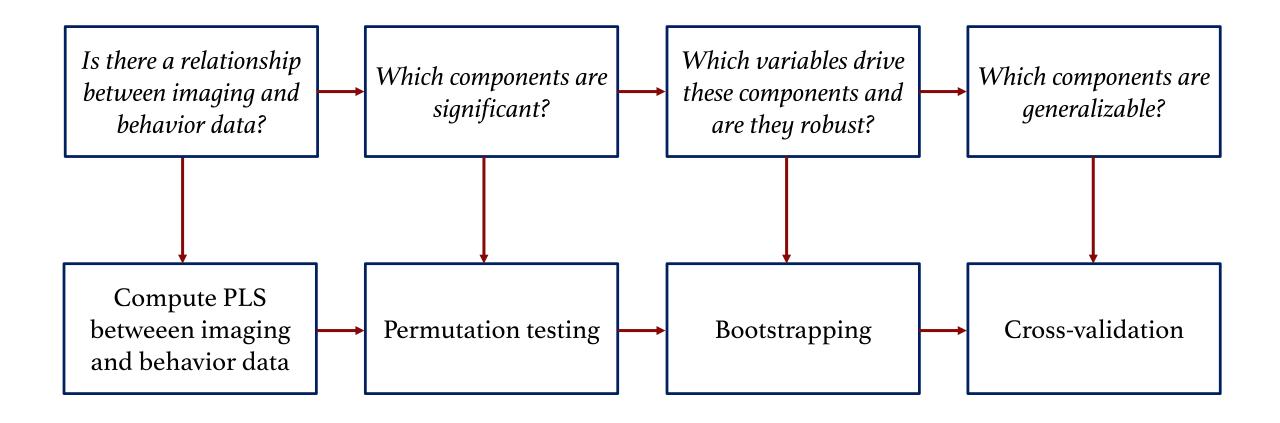
- Rank of cross-covariance matrix determines the number of components
- Components are ordered by effect size
 - Amount of covariance explained by each component

R U $S_{i} : singular value$

of component i

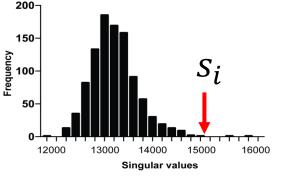
- Components are orthogonal
 - Each component explains a different part of the covariance between imaging and behavior data

PLS | Analysis flowchart



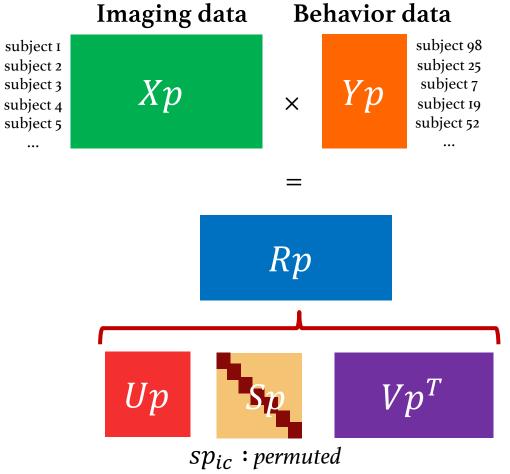
PLS | Permutation testing

- Which components are significant?
 - Permute rows (subjects) in *Y*
 - Distribution of singular values under the null hypothesis



$$p = \frac{1 + \sum_{c=1}^{C} sp_{ic} \ge s_i}{1 + C}$$

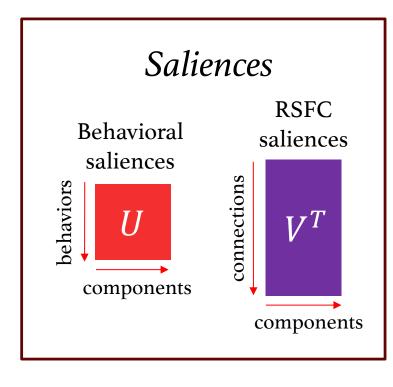
C = number of permutations

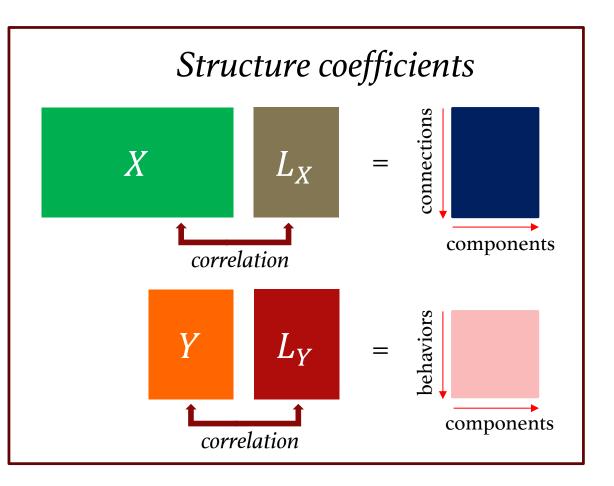


sp_{ic} : permutea singular values of component i PLS | Loadings

• Which variables characterize these components?

• Loadings can either be :



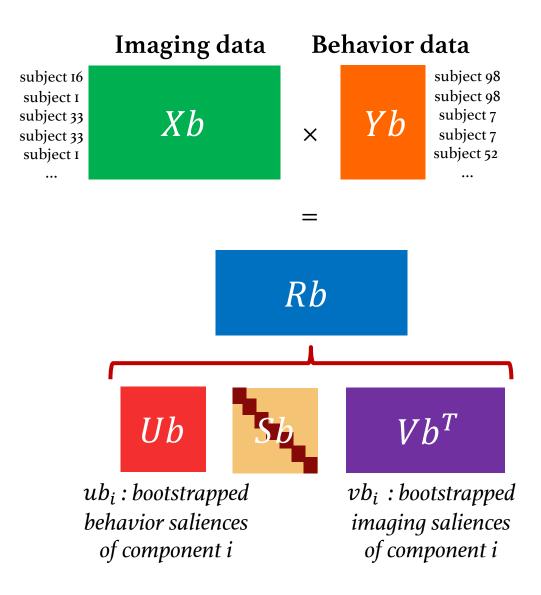


PLS | Bootstrapping

- Which loadings are stable (irrespective of the sample) ?
 - Sample rows (subjects) in *X* and *Y* with replacement

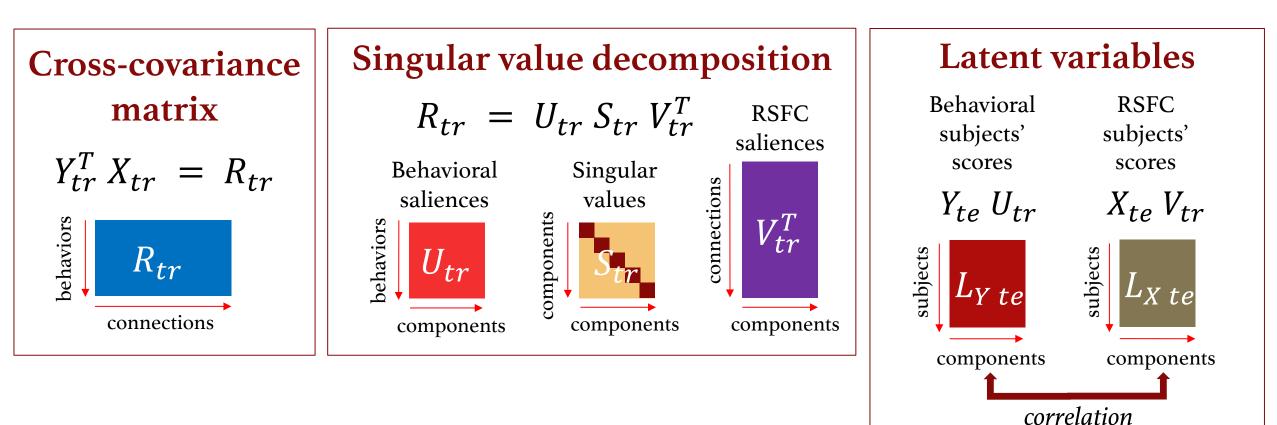
• Bootstrap ratio:
$$\frac{u_i}{\widehat{\sigma}(ub_i)}$$
 and $\frac{v_i}{\widehat{\sigma}(vb_i)}$

• High loadings with low standard error are considered stable



PLS | Cross-validation

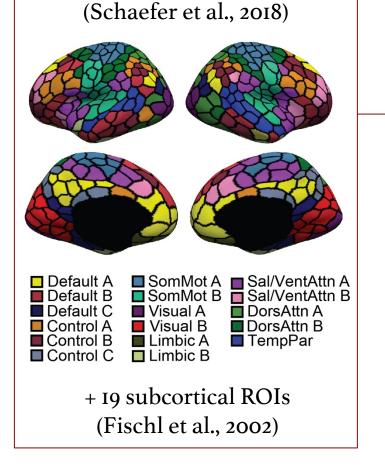
• Which components are generalizable to unseen data?



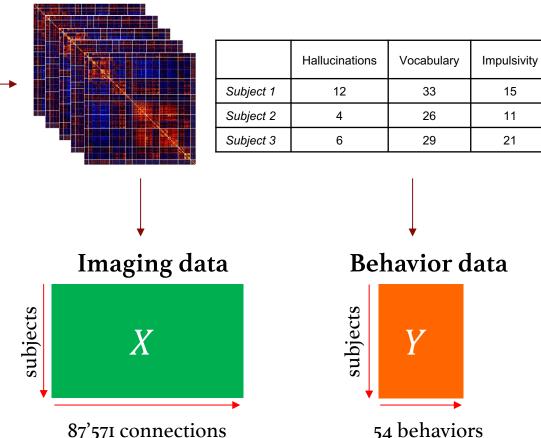
PLS | Illustration

UCLA Consortium for Neuropsychiatric Phenomics dataset 224 subjects

(psychiatric patients & controls)



400 cortical ROIs



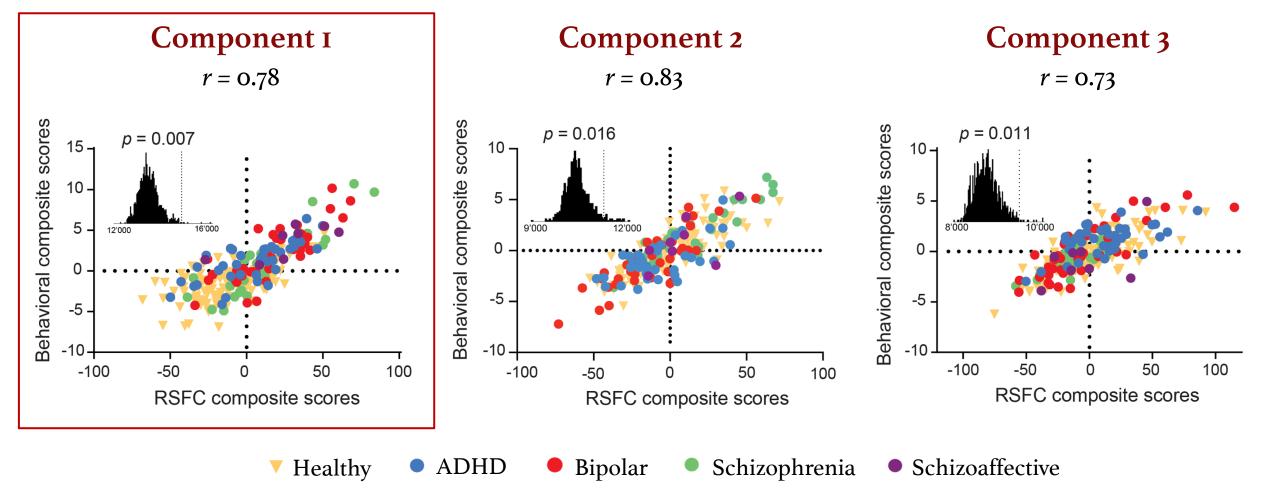
Kebets et al. Biol Psych (2019)

- Clinical symptoms (e.g., hallucinations)
 - Cognitive measures (e.g., vocabulary)

 Personality measures (e.g., impulsivity)

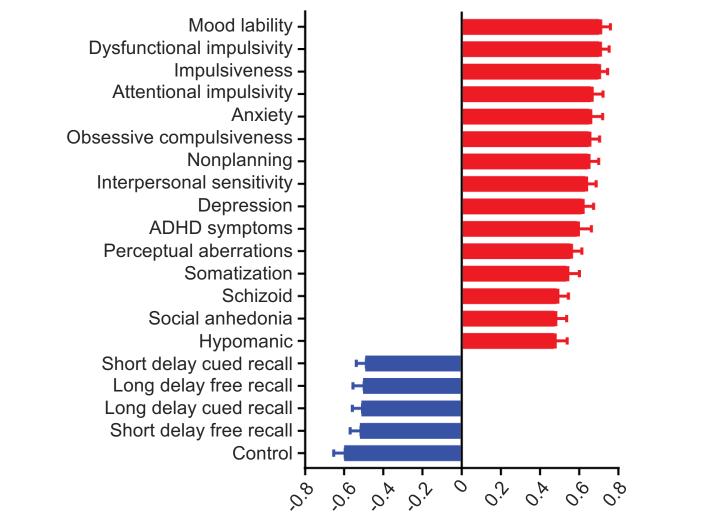
PLS | Components' significance

• 3 significant components found using permutation testing (1'000 permutations)



PLS | Loadings

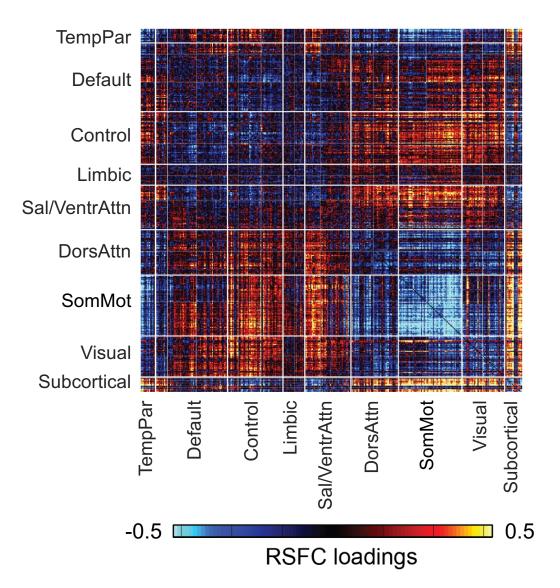
- Behavior loadings (structure coefficients)
- Top 20 behavior loadings characterized by higher clinical symptoms
 - → General psychopathology



Behavior loadings

PLS | Loadings

- RSFC loadings (structure coefficients)
- With greater psychopathology
 - FC within the Somatomotor network is decreased
 - The Dorsal attention, Somatomotor and Visual networks show increased FC with the Default, Control, Salience and Subcortical networks

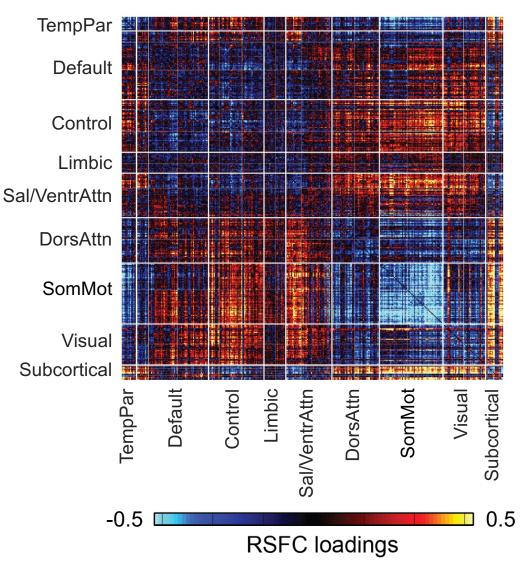


PLS | Loadings' robustness

- Bootstrap resampling (500 samples)
 - Bootstrap estimation of loadings' standard errors

• Bootstrap ratios =
$$\frac{\text{loading }_{i}}{\hat{\sigma}(\text{loading }_{i})}$$

- Bootstrap ratios averaged within/between networks
- Bootstrap ratios (≈ z-scores) converted to p-values & FDR-corrected

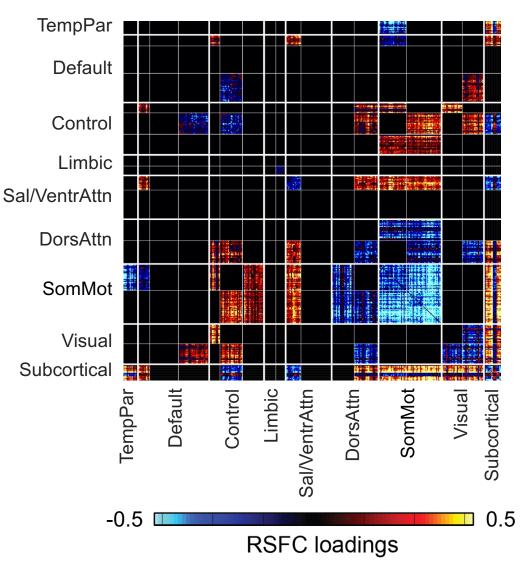


PLS | Loadings' robustness

- Bootstrap resampling (500 samples)
 - Bootstrap estimation of loadings' standard errors

• Bootstrap ratios =
$$\frac{\text{loading}_{i}}{\hat{\sigma}(\text{loading}_{i})}$$

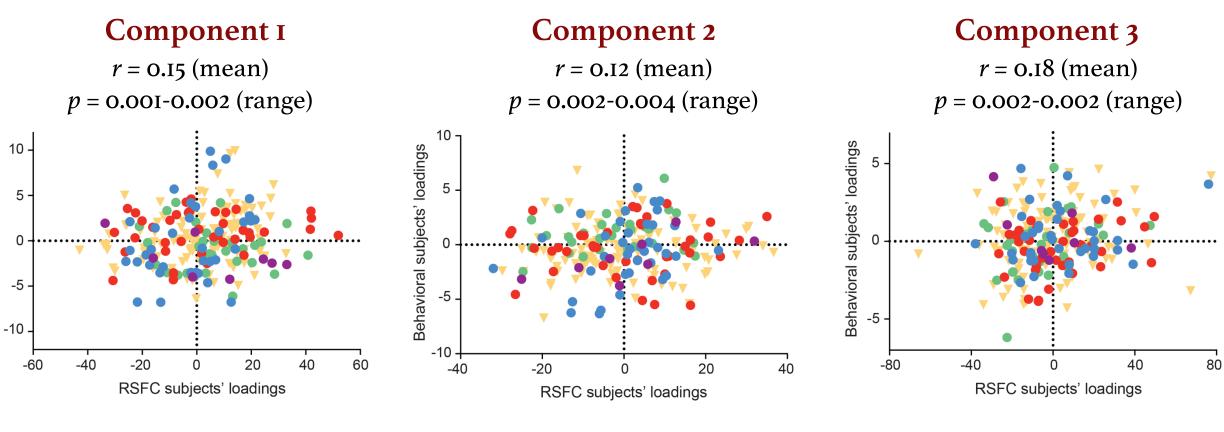
- Bootstrap ratios averaged within/between networks
- Bootstrap ratios (≈ z-scores) converted to p-values & FDR-corrected



PLS | Cross-validation

Behavioral subjects' loadings

• The 3 components estimated from 80% successfully generalized to the remaining 20%



Healthy 🛛 🔍 ADHD

Bipolar

Schizophrenia • Schizoaffective

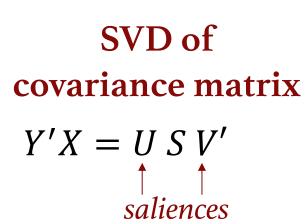
Outline

Comparison with other unsupervised techniques

• Principal component analysis, Canonical correlation analysis

Principal component analysis (PCA)

- Principal component analysis (PCA) creates a set of new variables, called **principal components**, which are linear combinations of the original variables in *X*
- Principal components are mutually **uncorrelated** and capture unique, non-overlapping portions of variance
- Principal components are ordered by the magnitude of their squared singular values, which are proportional to the portion of variance accounted for by the component



PLS

Latent variables

$$L_X = X V$$
$$L_Y = Y U$$

SVD of covariance matrix X'X = U S V'f coefficients Component scores

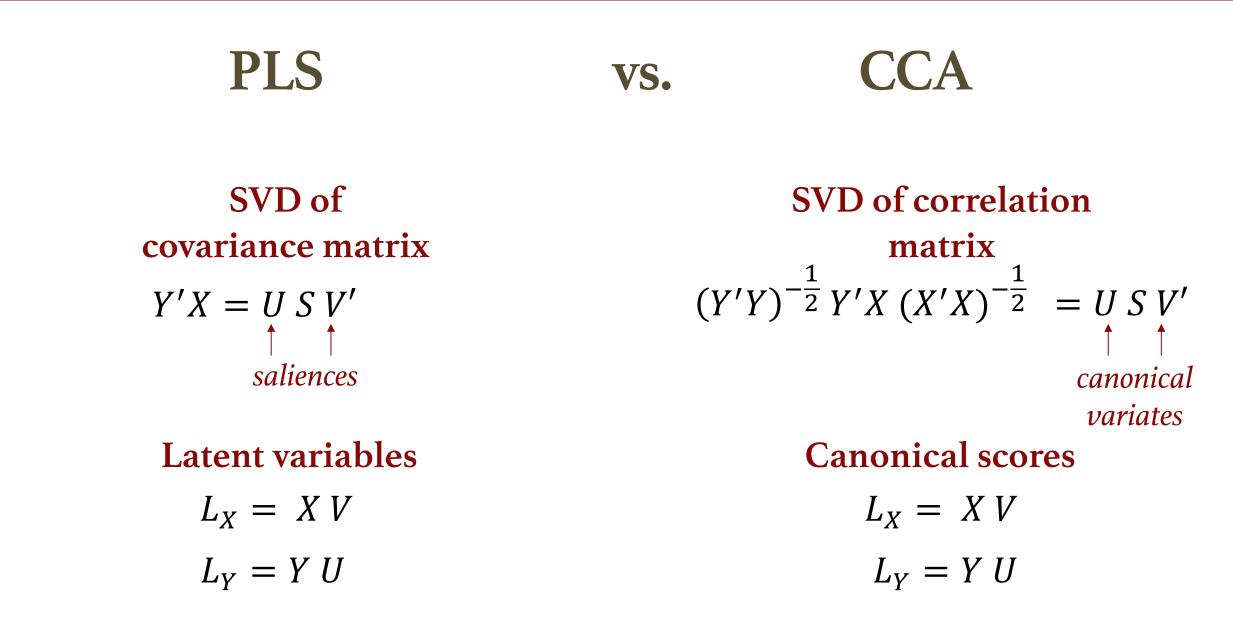
PCA

VS.

 $L_X = X V$

Canonical correlation analysis (CCA)

- Conceptually, canonical correlation analysis is very similar to PLS
 - CCA aims to create pairs of new variables, called canonical variates, which are linear combinations of the original variables (X and Y), that are maximally correlated
- Mathematically, there's an extra step in CCA
 - *X* and *Y* are first adjusted for within-set correlations before computing the cross-correlation matrix
 - However, often p > n, so the matrix inverse $X'X^{-1}$ doesn't exist because X'X is rank deficient
 - Therefore, dimensionality reduction is usually applied before computing CCA



PLS | Implementation

• myPLS - MATLAB - Daniela Zöller & Valeria Kebets

- <u>https://github.com/danizoeller/myPLS</u>
- Behavior PLS with 1D, 2D, 3D imaging data
- PLS MATLAB Rotman Baycrest
 - <u>https://www.rotman-baycrest.on.ca/index.php?section=84</u>
 - Behavior PLS, Seed PLS, Task PLS with 3D, 4D imaging data
- PYLS Python Ross Markello
 - <u>https://github.com/rmarkello/pyls</u>
 - Behavior PLS, Mean-centered PLS, PLS regression

\rightarrow **POSTER 1111**

References

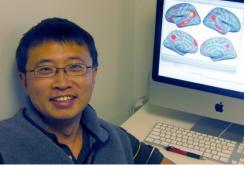
PLS

- Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011). Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. *Neuroimage*, *56*(2), *455-75*.
- McIntosh AR, Lobaugh NJ (2004). Partial least squares analysis of neuroimaging data: applications and advances. *Neuroimage*, 23(Suppl 1), S250-63.

Related methods

- McIntosh AR, Misic B (2013). Multivariate statistical analyses for neuroimaging data.
 Annu Rev Psychol, 64, 499-525
- Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012). A review of multivariate methods for multimodal fusion of brain imaging data. *J Neurosci Methods*, 204(1),68-81

Stay safe & thank you for your attention !



Dimitri Van De Ville

B.T. Thomas Yeo

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

SINGAPORE

Memory **Network** Program

Repository for Women in Neuroscience

- www.winrepo.org
- over 1,100 profiles
- easy search
- recommendations

Support the project: > sign up > spread the word > submit recommendations

