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Outline

● Keep your decoding model simple
● Beware accuracy and significance
● Inference about decoding model parameters 
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Keep your MVPA model simple

Can you explain what your 
model does to your 
grandmother ?

Can you explain her the 
validation metric you use ? 
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What is a simple model ?

● Linear models are simple
● Classification trees are somewhat simple
● Kernel methods not so simple
● Deep learning not simple at all

Complexity in the procedure:
● Feature selection
● Parameter tuning

Simplicity= few steps, few parameters to tune
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Parameters tuning is hard

Tuning a parameter: # selected voxels

CV accuracy is 
overoptimistic 

And 
misleading: 
generalizes 

poorly

http://nilearn.github.io/auto_examples/02_decoding/plot_haxby_grid_search.html

Unbiased 
accuracy

By nested 
cross-

validation

http://nilearn.github.io/auto_examples/02_decoding/plot_haxby_grid_search.html
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What is a simple model ?

Rather than

Both model equally good for discrimination, 
but the first one is “simpler” and more stable
[Hoyos-Idrobo et al. NeuroImage 2017]
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Lots of good news

● Linear models work well for neuroimaging data 

Example on connectome-based 
prediction [Dadi et al, NeuroImage 
2019]: good old logistic regression 
outperforms alternatives

See also: 
[He et al. NeuroImage 2019]
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Lots of good news

● Linear models work well for neuroimaging data 
● Standard libraries make machine learning 
plug-and-play

Scikit-learn example: parameter selection for Ridge regression 
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Lots of good news

● Linear models work well for neuroimaging data 
● Standard libraries make machine learning 
plug-and-play
● High-level dedicated objects make it easier

Model specification

 Provide data

obtain scoreNow in nilearn.github.io
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Caveat: linear decodability

● Does successful decoding w. linear classifier 
imply that brain activity encodes stimulus 
information linearly ?

● No
● Counter-example: position ((x, y) or (r, θ) 

coordinates) of an object in the visual field  
● not encoded linearly
● can be decoded linearly
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Caveat: linear decodability

Visual field

          neural response 
(population  

receptive fields)
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Caveat: linear decodability

[Thirion et al. Neuroimage 2006]

Visual field

          neural response 
(population 

receptive fields)

Prediction weights

Estimated position

    Decoding = 
summation
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A note on linear decodability

[Thirion et al. Neuroimage 2006]See also: 
https://nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html

Visual field

          neural response 
(population  

receptive fields)

Prediction weights

Estimated position

    Decoding = 
summation
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Outline

● Keep your decoding model simple
● Beware accuracy and significance
● Inference about decoding model parameters 
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Need high accuracy

Decoding doesn’t work with 55% accuracy:
● Error bars are large (see next slide)
● Model may have picked any confound that 
helps predicting 

● Statistical significance vs practical 
significance



June 2020 19Good models for fMRI-based decoding – Bertrand Thirion

Sample size and cross-validation
Rule of the thumb: uncertainty in 
prediction decreases with 1/ √n

[Varoquaux  et al NeuroImage 2017]
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Learning curve: how prediction 
improves with n

● Predict the age of a 
subject given gray 
matter density maps 
(OASIS dataset, 
n=403) 
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1

group 6

Variability actually worse than for univariate analysis !
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1 group 2
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1 group 2 group 3 group 4 group 5

group 6 group 7 group 8 group 9 group 10

Variability actually than than univariate analysis
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

mean

variance
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

Summarized into a d image:
(effect size)  / (effect std)

z=-5

z=5

z=0
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Weight maps 
for age 

prediction / 
OASIS

(effect size 
estimated by 

bootstrap)

z=-5

z=5

z=0

n=100 n=200 n=300

n=10 n=20 n=50
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Better than chance ?
● Chance level sometimes unknown 

● e.g. imbalanced classes
● Use a dummy classifier to estimate it

● Spread of accuracy obtained across validation 
folds: accuracy > chance in 90% folds
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Better than chance ?
● Chance level sometimes unknown 

● e.g. imbalanced classes
● Use a dummy classifier to estimate it

● Spread of accuracy obtained across validation 
folds: accuracy > chance in 90% folds

Scores across validation splits are not independent. Don’t use 
t-tests to assess significance of accuracy differences
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Outline

● Keep your decoding model simple
● Beware accuracy and significance
● Inference about decoding model parameters 
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Interpreting a decoding model

Linear classifiers 
provide weight maps:
Can we interpret them ? 
 

Is this spot encoding the  
“face” information ?

Problem: the whole pattern is predictive, hard to 
say anything about this particular region 
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Reverse inference

Conditional 
association test: 
does Xi predict y, 
given other signals 
(Xj) j≠i

Corr (Xi, y|(Xj) j≠i)≠ 0
X1

Xi

Xp

... y
The importance of 
Xi depends on all 
other brain regions
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Conditional and marginal 
inference

Corr (Xi, y|(Xj) j≠i)

Multivariate linear models Univariate linear models

Corr (Xi, y)
● Easy to compute
● Unaware of other brain regions

● Hard to compute
ill posed inverse problem

● Necessary to assert 
implication of region

Both are necessary [Weichwald et al. NeuroImage 2015]
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Reverse inference is ill-posed

 > Results depend on the 
prior used



June 2020 34Good models for fMRI-based decoding – Bertrand Thirion

p-values  on Predictive Patterns

[Chevalier et al. MICCAI 2018, 
submitted to Neuroimage]

Data

 

  
 

EnsemblingDesparsified        Lasso  
Clustering #B

Clustering #1

EnCluDL: estimate jointly the predictive pattern and its variance 
→ p-values on pattern maps 
→ type-1 error control
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p-values  on Predictive Patterns

FWER 
(p<0.05) 

control on 
predictive 

patterns

HCP gambling

HCP emotional

IBC RSVP language

Available here: https://github.com/ja-che/hidimstat

https://github.com/ja-che/hidimstat
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Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the 
dataset  
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Functional specificity and MVPA

A vs B A vs B, C, D, E, F

Discriminating patterns only reflect the categories present in the dataset  
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Functional specificity and MVPA

A vs B A vs B, C, D, E, F

Discriminating patterns only reflect the categories present in the dataset  

The classification procedure 
(one-versus-one, one-

versus-all, one-versus rest) 
matters
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Conclusion
● Limit complexity of Decoding procedures

● Complexity come with major costs (time, statistical)
● Linear models perform well
● Use high-level objects 

● Pattern maps are hard to interpret
● Relative to many choices
● Measure conditional associations
● Novel estimators (model ensembles) with stat 

guarantees
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The power of scikit learn 
for MVPA

● Machine learning for neuroimaging http://nilearn.github.io

● Scikit-learn-like API, BSD, Python, OSS

● Classification of neuroimaging data (decoding)
● Functional connectivity analysis
● GLM analysis

http://nilearn.github.io/
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To go further
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models in neuroimaging L Kohoutová, J Heo, S Cha, S Lee, T 
Moon, TD Wager, CW Woo Nature Protocols 15 (4), 1399-1435

● Encoding and decoding in fMRI. T Naselaris, KN Kay, S 
Nishimoto, JL Gallant. Neuroimage 56 (2), 400-410

● Predictive models avoid excessive reductionism in cognitive 
neuroimaging. Gaël Varoquaux, Russell Poldrack. Current 
Opinion in Neurobiology, Elsevier, In press, 55, 2018

● A primer on pattern-based approaches to fMRI: principles, 
pitfalls, and perspectives. JD Haynes. Neuron 87 (2), 257-270

● Atlases of cognition with large-scale human brain mapping. Y 
Schwartz, RA Poldrack, B Gauthier, D Bzdok, JB Poline, B 
Thirion. PLoS Computational Biology 14 (11), e1006565
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