What makes a good multivariate model for fMRI-based decoding ?

Bertrand Thirion, Inria, CEA, Université Paris-Saclay http://parietal.saclay.inria.fr bertrand.thirion@inria.fr

Brain activity decoding

Cognitive theories

Outline

- Keep your decoding model simple
- Beware accuracy and significance

June 2020

• Inference about decoding model parameters

Outline

- Keep your decoding model simple
- Beware accuracy and significance

June 2020

• Inference about decoding model parameters

Keep your MVPA model simple

Can you explain what your model does to your grandmother ?

Can you explain her the validation metric you use ?

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

What is a simple model ?

- Linear models are simple
- Classification trees are somewhat simple.
- Kernel methods not so simple
- Deep learning not simple at all

Complexity in the procedure:

- Feature selection
- Parameter tuning

Simplicity= few steps, few parameters to tune

Parameters tuning is hard

Tuning a parameter: # selected voxels

http://nilearn.github.io/auto_examples/02_decoding/plot_haxby_grid_search.html June 2020 Good models for fMRI-based decoding – Bertrand Thirion

What is a simple model ?

Rather than

Both model equally good for discrimination, but the first one is "simpler" and more stable [Hoyos-Idrobo et al. NeuroImage 2017]

Lots of good news

Linear models work well for neuroimaging data

Example on connectome-based prediction [Dadi et al, NeuroImage 2019]: good old logistic regression outperforms alternatives

See also:

[He et al. NeuroImage 2019]

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

Lots of good news

- Linear models work well for neuroimaging data
- Standard libraries make machine learning plug-and-play

```
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> X, y = load_diabetes(return_X_y=True)
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.5166...
```

Scikit-learn example: parameter selection for Ridge regression

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

Lots of good news

- Linear models work well for neuroimaging data
- Standard libraries make machine learning plug-and-play
- High-level dedicated objects make it easier

Now in nilearn.github.io

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

11

obtain score

Caveat: linear decodability

• Does successful **decoding** w. *linear* classifier imply that brain activity **encodes** stimulus information *linearly* ?

• No

- Counter-example: position ((x, y) or (r, θ) coordinates) of an object in the visual field
 - not encoded linearly
 - can be decoded linearly

Caveat: linear decodability

Visual field

June 2020

neural response (population receptive fields)

[Thirion et al. Neuroimage 2006]

June 2020 Good models for fMRI-based decoding – Bertrand Thirion

Outline

- Keep your decoding model simple
- Beware accuracy and significance

June 2020

• Inference about decoding model parameters

Need high accuracy

print("Classification accuracy: %.4f / Chance level: %f" %
 (classification_accuracy, 1. / len(conditions.unique())))
Classification accuracy: 0.70370 / Chance level: 0.5000

Decoding doesn't work with 55% accuracy:

- Error bars are large (see next slide)
- Model may have picked any confound that helps predicting
- Statistical significance vs practical significance

Sample size and cross-validation

Rule of the thumb: uncertainty in prediction decreases with $1/\sqrt{n}$

[Varoquaux et al Neurolmage 2017]

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

Learning curve: how prediction improves with n

 Predict the age of a subject given gray matter density maps (OASIS dataset, n=403)

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers

group 6

June 2020

Variability actually worse than for univariate analysis ! Good models for fMRI-based decoding – Bertrand Thirion

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers

Variability actually than than univariate analysis Good models for fMRI-based decoding – Bertrand Thirion

The weight map depends on the batch of subject considered (bootstrap): One question, different dataset, different answers

The weight map depends on the batch of subject considered (bootstrap): One question, different dataset, different answers

n=10

n=20

n=50

Weight maps for age prediction / **OASIS**

z=5

n=100

(effect size estimated by bootstrap)

7=0

z=0

Jun<u>e 2020</u>

Better than chance ?

- Chance level sometimes unknown
 - e.g. imbalanced classes
- Use a dummy classifier to estimate it

```
>>> from sklearn.dummy import DummyClassifier
>>> null cv scores = cross val score(DummyClassifier(), fmri masked, target, cv=cv)
```

>>> from sklearn.model_selection import permutation_test_score
>>> null_cv_scores = permutation_test_score(svc, fmri_masked, target, cv=cv)

 Spread of accuracy obtained across validation folds: accuracy > chance in 90% folds

Better than chance ?

- Chance level sometimes unknown
 - e.g. imbalanced classes
- Use a dummy classifier to estimate it

```
>>> from sklearn.dummy import DummyClassifier
>>> null cv scores = cross val score(DummyClassifier(), fmri masked, target, cv=cv)
```

>>> from sklearn.model_selection import permutation_test_score
>>> null_cv_scores = permutation_test_score(svc, fmri_masked, target, cv=cv)

 Spread of accuracy obtained across validation folds: accuracy > chance in 90% folds

> Scores across validation splits are not independent. Don't use t-tests to assess significance of accuracy differences

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

Outline

- Keep your decoding model simple
- Beware accuracy and significance

June 2020

• Inference about decoding model parameters

Interpreting a decoding model

Linear classifiers provide **weight maps**: Can we interpret them ?

Is this spot encoding the "face" information ?

June 2020

Problem: the **whole pattern** is predictive, hard to say anything about this particular region

Reverse inference

Conditional association test: does **X**, predict **y**, **given** other signals (X_i) _{j≠i} Corr $(\mathbf{X}_{i}, \mathbf{y}|(\mathbf{X}_{i})_{i\neq i}) \neq 0$

The importance of **X**_i depends on all other brain regions

Conditional and marginal inference

Multivariate linear models

 $Corr (\boldsymbol{X}_{i}, \boldsymbol{y}|(\boldsymbol{X}_{j})_{j\neq i})$

- Hard to compute *ill posed inverse problem*
- Necessary to assert implication of region

June 2020

Univariate linear models

 $Corr(\boldsymbol{X}_{i}, \boldsymbol{y})$

- Easy to compute
- Unaware of other brain regions

Both are necessary [Weichwald et al. NeuroImage 2015]

Reverse inference is ill-posed

face vs others, log I2 cv 0.021 R 0.011 > Results depend on the -0.011 prior used -0.021 face vs others, SVC cv face vs others, ridge cv 0.0069 0.0087 R R 0.0034 0.0044 -0.0034 -0.0044 -0.0069 -0.0087 v = -69x=-3 face vs others, log 11 face vs others, log l1 cv 0.49 0.66 R R 0.33 0.24 0 -0.33 -0.24 -0.66 -0.49 x = -3z=6face vs others, spacenet tv-l1 0.28 face vs others, spacenet graphnet 0.28 R R 0.14 0.14 0 -0 -0.14 -0.14 -0.28 -0.28 v=-69

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

33

p-values on Predictive Patterns

EnCluDL: estimate jointly the predictive pattern and its variance

- \rightarrow p-values on pattern maps
- \rightarrow type-1 error control

p-values on Predictive Patterns

Available here: https://github.com/ja-che/hidimstat

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the dataset

Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the dataset

Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the dataset

Conclusion

- Limit complexity of Decoding procedures
 - Complexity come with major costs (time, statistical)
 - Linear models perform well
 - Use high-level objects
- Pattern maps are hard to interpret
 - Relative to many choices

- Measure conditional associations
- Novel estimators (model ensembles) with stat guarantees

The power of scikit learn for MVPA

- Machine learning for neuroimaging http://nilearn.github.io
- Scikit-learn-like API, BSD, Python, OSS
 - Classification of neuroimaging data (decoding)
 - Functional connectivity analysis
 - GLM analysis

Parietal

- G. Varoquaux,
- A. Gramfort,
- P. Ciuciu,
- D. Wassermann,
- D. Engemann,
- B. Nguyen
- A.L. Grilo Pinho,
- E. Dohmatob,
- A. Mensch,
- J.A. Chevalier,
- A. Hoyos idrobo,
- D. Bzdok,
- J. Dockès,
- P. Cerda,
- C. Lazarus
- D. La Rocca
- G. Lemaitre
- L. El Gueddari
- O. Grisel
- M. Massias
- P. Ablin
- H. Janati
- J. Massich
- K. Dadi
- H. Richard
- C. Petitot

Acknowledgements

UNU

SACO

Other collaborators R. Poldrack, J. Haxby C. F. Gorgolevski J. Salmon S. Arlot M. Lerasle

Human Brain Project UNIVERSITE

41

June 2020

Good models for fMRI-based decoding – Bertrand Thirion

To go further

- Toward a unified framework for interpreting machine-learning models in neuroimaging L Kohoutová, J Heo, S Cha, S Lee, T Moon, TD Wager, CW Woo Nature Protocols 15 (4), 1399-1435
- Encoding and decoding in fMRI. T Naselaris, KN Kay, S Nishimoto, JL Gallant. Neuroimage 56 (2), 400-410
- Predictive models avoid excessive reductionism in cognitive neuroimaging. Gaël Varoquaux, Russell Poldrack. Current Opinion in Neurobiology, Elsevier, In press, 55, 2018
- A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. JD Haynes. Neuron 87 (2), 257-270
- Atlases of cognition with large-scale human brain mapping. Y Schwartz, RA Poldrack, B Gauthier, D Bzdok, JB Poline, B Thirion. PLoS Computational Biology 14 (11), e1006565