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» Keep your decoding model simple
* Beware accuracy and significance
* Inference about decoding model parameters
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__________________________________________
Keep your MVPA model simple

Can you explain what your
model does to your
grandmother ?

Can you explain her the -

validation metric you use ? “
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____________________________________________
What is a simple model ?

* Kernel methods not so simple
* Deep learning not simple at all

Complexity in the procedure:
* Feature selection
e Parameter tuning

Simplicity= few steps, few parameters to tune
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Parameters tuning is hard

CV accuracy is

/ overoptimistic
Unbiased 07 - \

-
accuracy N “‘*-"’_
By nested ___ And
_ 0.5 - i ,
Cross misleading:
validation 041 generalizes
— (Cross validation scores
—— Left-out validation data scores pOOrIy
0.3 97 —— Nested cross-validation

Tuning a parameter: # selected voxels

http://nilearn.github.io/auto_examples/02_decoding/plot_haxby grid search.html
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http://nilearn.github.io/auto_examples/02_decoding/plot_haxby_grid_search.html

S ———
What is a simple model ?

FReM: SVM-g; + clustering

Both model equally good for discrimination,
but the first one is “simpler” and more stable
‘Hoyos-Ildrobo et al. Neurolmage 2017]
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____________________________________________
Lots of good news

* Linear models work well for neuroimaging data

-'l"

K-NN

Example on connectome-based
prediction [Dadi et al, Neurolmage
2019]: good old logistic regression

Random Forest

Gaussian
Naive Bayes

Classifiers

SVC-f;
ANOVA + outperforms alternatives

SVC-{;
Logistic-£1 ’ S |

ee also:
Ridge
« COBRE [He et al. Neurolmage 2019]
SVC-f; = ADNI

ANOVA + > ADNIDOD

SVC-{/, 4ACPI
v ABIDE

<HCP
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____________________________________________
Lots of good news

* Linear models work well for neuroimaging data
* Standard libraries make machine learning
plug-and-play

>>> from sklearn.datasets import load_diabetes

>>> from sklearn.linear_model import RidgeCV

>>> X, y = load_diabetes(return_X_y=True)

>>> ¢lf = RidgeCV(alphas=[1e-3, 1le-2, 1le-1, 1]).f1it(X, vy)
>>> clf.score(X, vy)

B.5166. ..

Scikit-learn example: parameter selection for Ridge regression
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____________________________________________
Lots of good news

* Linear models work well for neuroimaging data
* Standard libraries make machine learning
plug-and-play

* High-level dedicated objects make it easier

Model specification
decoder = Decoder(estimator="'svc 1l1', cv=cv,

mask=masker, scoring='roc auc’) Provide data
decoder.fit(task data, classification target, groups=session labels)
mask scores[mask name][category] = decoder.cv scores [1]

obtain score

Now in nilearn.github.io
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Caveat: linear decodability

* Does successful decoding w. linear classifier
iImply that brain activity encodes stimulus
information linearly ?

* No

e Counter-example: position ((x, y) or (r, 0)
coordinates) of an object in the visual field

* not encoded linearly
* can be decoded linearly
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Caveat: linear decodability

Visual field

neural response
(population
receptive fields
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Caveat: linear decodability

neural response
(population
receptive fields)

Prediction weights

Decoding =
summation

Estimated p05|t|on

[Thirion et al. Neuroimage 2006]
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A note on linear decodability

Visual field

neural response
(population
receptive ﬁelds)

Prediction weights
Decoding =
summation

Estimated position

[Thirion et al. Neuroimage 2006]

See also:
https://nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html
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* Keep your decoding model simple
* Beware accuracy and significance
* Inference about decoding model parameters
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____________________________________________
Need high accuracy

print("Classification accuracy: %.47 / Chance level: %" %
(classification accuracy, 1. / len(conditions.unique())))
# Classification accuracy: 0.70370 / Chance level: 0.5000

Decoding doesn’t work with 55% accuracy:
* Error bars are large (see next slide)
* Model may have picked any confound that
helps predicting
* Statistical significance vs practical
significance
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Sample size and cross-validation

b. Simulations LOO [

30

splits, 20% test [

0 LOO ]
%— 100 +10%
&=
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Q +7%
S 200
@©
=
© 50 splits, 20% test [
O LOO ]
= +6%
2 300
=
g 50 splits, 20% test [
LOO [
3% +3%
1000

+2%
50 splits, 209 test [0

Rule of the thumb: uncertainty in
prediction decreases with 1/ Vn

a. Neuroimaging data LOO

fMRI 2104
within subject
~212 samples
50 splits, 20% test Il
LOO
fMRI
across subject
~241 samples
0 splits, 20% test Il
LOO
MEG +14%
~199 samples

+10%

50 splits, 20% test I
-30% -15% 0% +15% +30%

Estimation error on the prediction accuracy

-30%  -15% 0%  +15% +30%
Estimation error on the prediction accuracy

[Varoquaux et al Neurolmage 2017]
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____________________________________________
Learning curve: how prediction

Improves with n

predlctmn accuracy (R™2) nf age

1.0
* Predictthe age ofa os} = = =
subject given gray ~ %6r . & '
matter density maps *‘[ =5 Lo
(OASIS dataset, Es -
n=403) 02l
-0.4F
-0.6 '

10 20 50 100 200 300
Sample size
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e
Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

Variability actually worse than for univariate analysis !
Good models for fMRI-based decoding — Bertrand Thirion
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Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group-1
z=0

group 6

June 2020

L R
groﬁg 2 -_
z=0

L R
group 7

Variability actuall
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Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers
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Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

Summarized into a d image:
(effect size) / (effect std)
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Weight maps
for age
prediction /
OASIS

Z=5
H (effect size
estimated by
bootstrap)
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Better than chance ?

 Chance level sometimes unknown
* e.g. Imbalanced classes
* Use a dummy classifier to estimate it

>=>> from sklearn.dummy import DummyClassifier
==> null cv scores = cross val score(DummyClassifier(), fmri masked, target, cv=cv)

>>> from sklearn.model_selection import permutation test score
>>> null cv scores = permutation test score(svc, fmri masked, target, cv=cv)

e Spread of accuracy obtained across validation
folds: accuracy > chance in 90% folds
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Better than chance ?

 Chance level sometimes unknown
* e.g. Imbalanced classes
* Use a dummy classifier to estimate it

>=>> from sklearn.dummy import DummyClassifier
==> null cv scores = cross val score(DummyClassifier(), fmri masked, target, cv=cv)

>>> from sklearn.model_selection import permutation test score
>>> null cv scores = permutation test score(svc, fmri masked, target, cv=cv)

e Spread of accuracy obtained across validation
folds: accuracy > chance in 90% folds

Scores across validation splits are not independent. Don't use
t-tests to assess significance of accuracy differences
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* Keep your decoding model simple
* Beware accuracy and significance
* Inference about decoding model parameters
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Interpreting a decoding model

Linear classifiers
provide weight maps:
Can we interpret them ?

face vs others (multivariate) 0.0069 '
4

“face” information ?

Problem: the whole pattern is predictive, hard to
say anything about this particular region
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Reverse inference

L face vs others, SVC cv R 0.0069
Conditional <
. . "-. 0.0034
association test: | .. __ K
does X. predict y, x ’ I
given other signals F== o 00000
(X)) ..
17 J#1 <: X1
Corr (X, y[(X) .,)# O

X The importance of
y X depends on all

/ other brain regions
X
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- ____________________________
Conditional and marginal

Inference

Multivariate linear models Univariate linear models

Corr (X, yI(X) ) Corr (X,, y)
* Hard to compute * Easy to compute
ill posed inverse problem * Unaware of other brain regions

* Necessary to assert
implication of region

Both are necessary [\Weichwald et al. Neurolmage 2015]
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y=-69 x=-34 - y=-69 x=-34
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p-values on Predictive Patterns

[Chevalier et al. MICCAI 2018,

submitted to Neuroimage]

Desparsaﬁed Ensembling

— . /

Lasso

EnCluDL: estimate jointly the predictive pattern and its variance
— p-values on pattern maps
— type-1 error control
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p-values on Predictive Patterns

EnClubDL R

R FWER
encuo. R (p<0.05)
control on

predictive

patterns

Available here: https://github.com/ja-che/hidimstat
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https://github.com/ja-che/hidimstat

____________________________________________
Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the
dataset

Avs B

SHE:
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Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the dataset

A vs B AvsB,C, D, E, F

Q1 m
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Functional specificity and MVPA

Discriminating patterns only reflect the categories present in the dataset

A vs B AvsB,C D,E F

I I .
o) : The classification procedure \\ﬁ e
A (one-versus-one, one- \,” g@z

- 7‘\
I versus-all, one-versus rest) ,I .
I matters Y L N
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e
Conclusion

* Limit complexity of Decoding procedures

 Complexity come with major costs (time, statistical)
* Linear models perform well
* Use high-level objects

e Pattern maps are hard to interpret

* Relative to many choices

e Measure conditional associations

* Novel estimators (model ensembles) with stat
guarantees
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The power of scikit learn
for MVPA

* Machine learning for neuroimaging http://nilearn.github.io
e Scikit-learn-like API, BSD, Python, OSS
* Classification of neuroimaging data (decoding)

* Functional connectivity analysis
e GLM analysis

e

p | Ot_s u rf_Sta t_n1 a p p I Ot_S U rf_ro i VO |_tO_S u rf 0 GroupSparseCovariance o = 1.35¢~02 / covariance

]
—= || |

o
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To go further

* Toward a unified framework for interpreting machine-learning
models in neuroimaging L Kohoutova, J Heo, S Cha, S Lee, T
Moon, TD Wager, CW Woo Nature Protocols 15 (4), 1399-1435

* Encoding and decoding in fMRI. T Naselaris, KN Kay, S
Nishimoto, JL Gallant. Neuroimage 56 (2), 400-410

* Predictive models avoid excessive reductionism in cognitive
neuroimaging. Gaél Varoquaux, Russell Poldrack. Current
Opinion in Neurobiology, Elsevier, In press, 55, 2018

e A primer on pattern-based approaches to fMRI: principles,
pitfalls, and perspectives. JD Haynes. Neuron 87 (2), 257-270

* Atlases of cognition with large-scale human brain mapping. Y
Schwartz, RA Poldrack, B Gauthier, D Bzdok, JB Poline, B
Thirion. PLoS Computational Biology 14 (11), e1006565
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