

www.aramislab.fr www.clinica.run

ninon.burgos@icm-institute.org

OHBM - ML4NI 2020

From machine learning to deep learning,

how do we ensure objective and reproducible evaluations?

Ninon Burgos, CNRS Researcher Aramis Lab, Paris Brain Institute, France

Basic elements of a machine learning classification pipeline

- Training data set
- Feature extraction from raw data and dimensionality reduction
- Model training and optimization
- Application to test data

diagnosis

Basic elements of a deep learning classification pipeline

- Training data set
- Feature extraction from raw data and dimensionality reduction
- Model training and optimization
- Application to test data

What is Alzheimer's disease?

- Most common cause of dementia
- Disorder caused by abnormal brain changes
- Trigger decline in cognitive abilities, severe enough to impair daily life
- Affect behaviour, feelings and relationships
- Progressive disease

AD-related biomarkers

- Clinical/cognitive tests
 - Neuropsychological testing of cognitive functions (memory, language, etc.)
- Structural MRI
 - Atrophy
- FDG PET
 - Hypometabolism
- CSF AB42, CSF tau, amyloid PET, tau PET, diffusion MRI, etc.

Alzheimer's disease

Structural MRI

FDG PET

Clinical pattern recognition

Use case: Alzheimer's disease (AD)

- Classification
 - Controls vs AD patients
 - Stable vs progressive mild cognitive impairment (MCI)
- Regression
 - Time of onset
 - Future clinical score

ARAMIS

score

Klöppel et al., NeuroImage, 2008; Davatzikos et al, Neurobiology of Aging, 2008; Zhang et al, NeuroImage, 2011; Cuingnet et al, NeuroImage, 2011

ML/DL for Alzheimer's diagnosis & prognosis

A very active field of research

ML/DL for Alzheimer's diagnosis & prognosis

Elements that might differ between AD classification studies

- Training and test sets
- Imaging modality/ies
- Image preprocessing pipelines
- Features extracted
- Classification algorithms
- Cross-validation procedures
- Reported evaluation metrics

Clinical pattern recognition

- Where to find data?
- How to organise data?
- How to preprocess and extract features from images?
- Which classifiers can be selected?
- Which cross-validation strategy can be implemented?
- Which tasks may be of interest?
- What is the influence of these choices on the classification performance?

ARAMIS

Software platform for clinical neuroimaging studies

Public datasets

- Dementia
 - Image and Data Archive (https://ida.loni.usc.edu)

- Open Access Series of Imaging Studies (www.oasis-brains.org)
- Other conditions

- BraTS (<u>http://braintumorsegmentation.org</u>)
- IXI (<u>https://brain-development.org/ixi-dataset</u>)
- etc.

Data organisation and curation

094 S 4089	sub-ADNI094S4089
	ses_N00
— Accelerated SAG IR-SPGR	
— AV45 Coreg. Avg. Standardized Image and Voxel Size	I— anat
····	│ │ └── sub-ADNI094S4089_ses-M00_T1w.nii.gz
— Average DC	L— dwi
Axial DTI	$\int \int dx $
– Axial FLAIR	
— Axial T2 Star	sub-ADNI09454089_ses-INI00_acq-axiai_dwi.bvec
— Calibration_Scan	│ └── sub-ADNI094S4089_ses-M00_acq-axial_dwi.nii.gz
Coreg,_Avg,_Standardized_Image_and_Voxel_Size	— pet
	$\begin{vmatrix} 1 \\ - \end{vmatrix}$ sub-ADNI094S4089 ses-M00 task-rest acg-av45 pet nii gz
Eddy_current_corrected_image	$ $ sub ADN00454089_ses N00_task rest_acg ddq pet nii gz
EPI_current_corrected_image	Sub-ADM09454089_Ses-M00_task-rest_acq-rug_pet.nn.gz
— Fractional_Ansio.	ull ull sub-ADNI094S4089_ses-M00_scans.tsv
— HarP_135_final_release_2015	— ses-M03
HHP_6_DOF_AC-PC_registered_MPRAGE	— ses-M12
— MT1GradWarpN3m	
— Sag_IR-SPGR	
2011-06-29_14_37_16.0	
2011-10-18_12_15_56.0	
<u> </u>	
— ADNI_094_S_4089_MR_Sag_IR-SPGR_br_raw_20111019095510271_80_S125692_I261478.dcm	
ADNI_094_S_4089_MR_Sag_IR-SPGRbr_raw_20111019095512256_62_S125692_I261478.dcm	
- 2011 - 12 - 14 - 15 - 53 - 24.0	
$\begin{bmatrix}2012-00-15 & 14 & 14 & 22 & 0 \end{bmatrix}$	
= 2013 - 03 - 23 - 14 - 24 - 23 - 0	BRAIN IMAGING DATA STRUCTURE

- Spatially_Normalized,_Masked_and_N3_corrected_T1_image
- L T2-weighted_trace

http://bids.neuroimaging.io Gorgolewski et al., Nature Scientific Data, 2016

Converters available for:

- ADNI (Alzheimer's Disease Neuroimaging initiative)
- AIBL (Australian Imaging Biomarker & Lifestyle Flagship Study of Ageing)
- OASIS (Alzheimer's Disease and age-related dementia)
- NIFD (Neuroimaging in Frontotemporal Dementia)
- + internal studies to which we collaborate

Example from the ADNI dataset:

Anatomical MRI Atrophy

Diffusion MRI White matter alterations

FDG PET Hypometabolism Amyloid PET Protein aggregates

Image preprocessing

Image preprocessing

Statistical Parametric Mapping (SPM)

- www.fil.ion.ucl.ac.uk/spm
- **Modalities:** Structural and functional MRI, PET, SPECT, EEG, MEG
- Features: preprocessing, modelling, statistical inference, voxel-based morphometry, connectivity analysis

Frackowiak, Friston, Frith, Dolan, and Mazziotta, editors. Human Brain Function. Academic Press USA, 1997

FMRIB Software Library (FSL)

- https://fsl.fmrib.ox.ac.uk
- **Modalities:** Structural, functional, diffusion MRI
- Features: brain extraction, segmentation, registration, tractography, longitudinal analysis, statistical analysis

Jenkinson et al., NeuroImage, 2012

FreeSurfer

- https://surfer.nmr.mgh.harvard.edu
- **Modalities:** Structural, functional, diffusion MRI
- Features: skullstripping, registration, cortical surface reconstruction, segmentation, longitudinal processing, fMRI analysis, tractography

Fischl, NeuroImage, 2012

Advanced Normalization Tools (ANTs)

- http://stnava.github.io/ANTs
- **Modalities:** Structural, functional, diffusion MRI, PET
- **Features:** bias field correction, registration, segmentation, cortical thickness estimation

Avants et al., Frontiers in Neuroinformatics, 2014

Anatomical MRI (T1-weighted)

- t1-linear Bias field correction and affine registration to standard space using ANTs
- **t1-volume** Tissue segmentation, spatial normalization and parcellation using SPM
- **t1-freesurfer** Cortical surface extraction, spatial normalization and parcellation using FreeSurfer

Diffusion MRI (DWI)

- dwi-preprocessing-* Correction of head motion, magnetic susceptibility, eddy current and bias field induced distortions
- dwi-dti Extraction of DTI-based measures and spatial normalization
- **dwi-connectome** Computation of fiber orientation distributions, tractogram and connectome

Positron emission tomography (PET)

- **pet-volume** Registration to T1w MRI, intensity normalization, partial volume correction and spatial normalization
- **pet-surface** Registration to T1w MRI, intensity normalization, partial volume correction, projection of the PET signal onto the subject's cortical surface and spatial normalization

Pedregosa et al., JMLR, 2011; Samper-González et al., NeuroImage, 2018

Convolutional neural networks

2D slice-level CNN

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

Nested cross-validation

- Outer loop
- Nested loop

Adapted from Varoquaux et al., -NeuroImage, 2017

(Repeated) k-fold

Repeated hold-out

 \mathbf{W}

Samper-González et al., NeuroImage, 2018

Main causes of data leakage in DL scenarios

• Late split

• Biased within-subject split

ARAMIS

LAB BRAIN DATA SCIENCI 21

• Biased transfer learning

• No independent test set

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

ADNI dataset

	Ν	Age	Gender	MMSE	CDR
CN	282	74. 3 ± 5.9 [56.2, 89.0]	147 M / 135 F	29.0 ± 1.2 [24, 30]	0: 281; 0.5: 1
MCI	640	72.7 ± 7.5 [55.0, 91.4]	378 M / 262 F	27.8 ± 1.8 [23, 30]	0: 1; 0.5: 638; 1:1
AD	237	74.9 ± 7.8 [55.1, 90.3]	137 M / 100 F	23.2 ± 2.1 [18, 27]	0.5: 99; 1: 137; 2: 1
AD	237	74.9 ± 7.8 [55.1, 90.3]	137 M / 100 F	23.2 ± 2.1 [18, 27]	0.5: 99; 1: 137; 2: 1

Values are presented as mean ± SD [range].

M: male, F: female, MMSE: mini-mental state examination, CDR: global clinical dementia rating

- Tasks selected:
 - CN vs AD clinical diagnosis classification tasks
 - sMCI vs pMCI "predictive" task of the evolution

Samper-González et al., NeuroImage, 2018

Samper-González et al., NeuroImage, 2018; https://gitlab.icm-institute.org/aramislab/AD-ML

Influence of the classifier

Linear SVM and logistic regression with L2 regularization: similar balanced accuracies

Random forest: consistently lower balanced accuracy

Influence of the type of features

	Linear SVM			
	Voxel-based	Region-based		
CN vs AD	87% ± 2.6%	84% ± 2.4%		
sMCI vs pMCI	66% ± 4.0%	70% ± 3.4%		

Balanced accuracy - Values are presented as mean \pm SD.

No systematic effect

• Voxel-based features

 $x \in \mathbb{R}^p$

where p is the number of voxels

• Region-based features

 $x \in \mathbb{R}^p$

where p is the number of regions

Generalisation across datasets

- Task: CN vs AD
- Subsets of equal size for each dataset (CN: 70, AD: 70)

Testing dataset	Training dataset	Voxel-based	Region-based	
ADNI	ADNI	85% ± 4.8%	81% ± 6.0%	
AIBL	AIBL	86% ± 4.8%	85% ± 5.8%	
	ADNI	86%	87%	
OASIS	OASIS	67% ± 6.3%	64% ± 7.2%	
	ADNI	67%	70%	

Balanced accuracy - Values are presented as mean \pm SD.

> The classifiers trained on ADNI data generalise well

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020; https://gitlab.icm-institute.org/aramislab/AD-DL; https://zenodo.org/record/3491003

Influence of the type of preprocessing

	3D subject-level CNN			
	Minimal Extensive			
CN vs AD	85% ± 4%	86% ± 6%		

Balanced accuracy on the validation set Values are presented as mean ± SD. Minimal preprocessing

Bias field correction + affine registration

• Extensive preprocessing

Bias field correction
+ non-rigid registration
+ skull stripping

Influence of the type of network architecture

	3D subject-level	3D patch-level	3D patch-level (hippocampi only)	2D slice-level
CN vs AD	85%	86%	85%	74%
sMCI vs pMCI	73%	70%	74%	-

Balanced accuracy on the test set - Values are presented as mean \pm SD.

> 3D subject-level and 3D patch-level approaches: similar balanced accuracies

> 2D-slice approach: consistently lower balanced accuracy

Generalisation across datasets

• Training: ADNI

	3D subject-level				
	ADNI AIBL OASIS				
CN vs AD	85%	86%	68 %		
sMCI vs pMCI	73%	50%	-		

Balanced accuracy on the test set - Values are presented as mean \pm SD.

> The models trained on ADNI data do not always generalise well

Comparison deep learning / machine learning

Training: ADNI

	3D subject-level			Linear SVM		
	ADNI	AIBL	OASIS	ADNI	AIBL	OASIS
CN vs AD	85%	86%	68%	87%	87 %	71%
sMCI vs pMCI	73%	50%	-	76%	68%	-

Balanced accuracy on the test set - Values are presented as mean \pm SD.

> Machine learning at least as good as deep learning

Evaluation of machine learning and deep learning approaches in Alzheimer's disease

- More reproducible
 - Data sharing
 - Storing of data using community standards
 - Fully automatic data manipulation
 - Code sharing
- More objective
 - Baseline approaches against which new methods can easily be compared
 - Rigorous validation
 - $\,\circ\,$ Large number of repeated random split to extensively assess the performance variability
 - $\circ\,$ Reporting of full distribution of metrics
 - $\circ\,$ Adequate nested CV for hyperparameter tuning

Varoquaux et al., NeuroImage, 2017;

Samper-González et al., NeuroImage, 2018; Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

- Clinica
 - www.clinica.run
 - Preprint: https://hal.inria.fr/hal-02308126
- Reproducible evaluation of AD classification
 - Machine learning
 - o https://github.com/aramis-lab/AD-ML
 - Samper-González et al., NeuroImage, 2018
 - $_{\odot}\,$ Wen et al., Neuroinformatics, 2020
 - Deep learning
 - o https://gitlab.icm-institute.org/aramislab/AD-DL
 - o https://zenodo.org/record/3491003
 - Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

Thank you!

Olivier Colliot Ninon Burgos Stanley Durrleman

Michael Bacci Simona Bottani Mauricio Diaz Sabrina Fontanella Jérémy Guillon

www.clinica.run

Alexis Guyot Thomas Jacquemont Pascal Lu Arnaud Marcoux Tristan Moreau Alexandre Routier Jorge Samper-Gonzalez Elina Thibeau--Sutre Junhao Wen Adam Wild

Software platform for clinical neuroimaging studies

