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Clinical pattern recognition 2

Basic elements of a machine
learning classification pipeline

• Training data set

• Feature extraction from raw data and 

dimensionality reduction 

• Model training and optimization 

• Application to test data 

Klöppel et al., NeuroImage, 2012
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Clinical pattern recognition 3

Basic elements of a deep learning 
classification pipeline 

• Training data set

• Feature extraction from raw data and 

dimensionality reduction 

• Model training and optimization 

• Application to test data 

PatientTraining set

Predicted 
diagnosis

Feature extraction 
(and selection)

+

Model training and 
optimisation

Feature extraction 
(and selection)

+

Application of 
model



Use case: Alzheimer’s disease (AD) 4

What is Alzheimer’s disease?

• Most common cause of dementia

• Disorder caused by abnormal brain changes

• Trigger decline in cognitive abilities, severe enough to impair daily life

• Affect behaviour, feelings and relationships

• Progressive disease

Mild cognitive 
impairment 

AD dementia

Cognitively normal

Future AD 
patients



Use case: Alzheimer’s disease (AD) 5

AD-related biomarkers

• Clinical/cognitive tests
• Neuropsychological testing of cognitive 

functions (memory, language, etc.) 

• Structural MRI
• Atrophy

• FDG PET
• Hypometabolism

• CSF Aß42, CSF tau, amyloid PET, tau PET, 
diffusion MRI, etc.

Cognitively
normal

Alzheimer’s
disease

Structural MRI

FDG PET



Clinical pattern recognition 6

Use case: Alzheimer’s disease (AD)

• Classification

• Controls vs AD patients

• Stable vs progressive mild cognitive 
impairment (MCI)

• Regression

• Time of onset

• Future clinical score

Klöppel et al., NeuroImage, 2008; Davatzikos et al, Neurobiology of Aging, 
2008; Zhang et al, NeuroImage, 2011; Cuingnet et al, NeuroImage, 2011 

PatientTraining set

Feature extraction 
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Feature extraction 
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ML/DL for Alzheimer’s diagnosis & prognosis 7

A very active field of research
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ML/DL for Alzheimer’s diagnosis & prognosis 8

Elements that might differ between 
AD classification studies

• Training and test sets

• Imaging modality/ies

• Image preprocessing pipelines

• Features extracted

• Classification algorithms

• Cross-validation procedures

• Reported evaluation metrics

PatientTraining set

Feature extraction 
(and selection)

Feature extraction 
(and selection)

Model training and 
optimisation

Application of 
model

Predicted
diagnosis
Predicted
diagnosis

?



Clinical pattern recognition 9

• Where to find data?

• How to organise data?

• How to preprocess and extract
features from images?

• Which classifiers can be selected?

• Which cross-validation strategy can
be implemented?

• Which tasks may be of interest?

• What is the influence of these
choices on the classification
performance?

PatientTraining set

Feature extraction 
(and selection)

Feature extraction 
(and selection)

Model training and 
optimisation

Application of 
model

Predicted
diagnosis



Clinica 10

Software platform for clinical neuroimaging studies

Morphometric 
and statistical 

models

Machine learning 
/ 

Deep learning

Standardized data structures:
BIDS & CAPS

Modalities

Anatomical MRI

Diffusion MRI

PET 

BIDS convertors

Preprocessing and 
Feature extraction

FreeSurfer, FSL, SPM, 

MRtrix3, PETPVC, ANTS

Standardized data structures:
BIDS & CAPS



Finding data 11

Public datasets
• Dementia

• Image and Data Archive (https://ida.loni.usc.edu)

• Open Access Series of Imaging Studies (www.oasis-brains.org)

• Other conditions
•

• BraTS (http://braintumorsegmentation.org)
• IXI (https://brain-development.org/ixi-dataset)
• etc.

http://braintumorsegmentation.org/
https://brain-development.org/ixi-dataset


Data organisation and curation 12

094_S_4089
…

|── Accelerated_SAG_IR-SPGR
|── AV45_Coreg,_Avg,_Standardized_Image_and_Voxel_Size
…
|── Average_DC
|── Axial_DTI
|── Axial_FLAIR
|── Axial_T2_Star
|── Calibration_Scan
|── Coreg,_Avg,_Standardized_Image_and_Voxel_Size
…

|── Eddy_current_corrected_image
|── EPI_current_corrected_image
|── Fractional_Ansio.
|── HarP_135_final_release_2015
|── HHP_6_DOF_AC-PC_registered_MPRAGE
|── MT1__GradWarp__N3m
|── Sag_IR-SPGR
│ |── 2011-06-29_14_37_16.0
│ |── 2011-10-18_12_15_56.0
│ │ └── S125692
│ │ |── ADNI_094_S_4089_MR_Sag_IR-SPGR__br_raw_20111019095510271_80_S125692_I261478.dcm
│ │ |── ADNI_094_S_4089_MR_Sag_IR-SPGR__br_raw_20111019095512256_62_S125692_I261478.dcm
│ │ |── ...
│ |── 2011-12-14_15_53_24.0
│ |── 2012-08-15_14_00_36.0
│ └── 2013-09-25_14_14_23.0
|── Sag_IR-SPGR_REPEAT
|── Spatially_Normalized,_Masked_and_N3_corrected_T1_image
└── T2-weighted_trace

sub-ADNI094S4089
|── ses-M00
│ |── anat
│ │ └── sub-ADNI094S4089_ses-M00_T1w.nii.gz
│ └── dwi
│ |── sub-ADNI094S4089_ses-M00_acq-axial_dwi.bval
│ |── sub-ADNI094S4089_ses-M00_acq-axial_dwi.bvec
│ └── sub-ADNI094S4089_ses-M00_acq-axial_dwi.nii.gz
│ |── pet
│ │ |── sub-ADNI094S4089_ses-M00_task-rest_acq-av45_pet.nii.gz
│ │ └── sub-ADNI094S4089_ses-M00_task-rest_acq-fdg_pet.nii.gz
│ └── sub-ADNI094S4089_ses-M00_scans.tsv
|── ses-M03
|── ses-M12
└── ses-M24

http://bids.neuroimaging.io
Gorgolewski et al., Nature Scientific Data, 2016



Data organisation and curation with Clinica 13

Converters available for:

• ADNI (Alzheimer’s Disease Neuroimaging initiative)

• AIBL (Australian Imaging Biomarker & Lifestyle Flagship Study of Ageing)

• OASIS (Alzheimer’s Disease and age-related dementia)

• NIFD (Neuroimaging in Frontotemporal Dementia)

• + internal studies to which we collaborate



Imaging modalities 14

Example from the ADNI dataset:

Anatomical MRI
Atrophy

FDG PET
Hypometabolism

Amyloid PET
Protein aggregates

Diffusion MRI
White matter alterations



Image preprocessing 15

Original T1-weighted 
MR image

Correction of intensity inhomogeneities
+ affine registration to template

Non-rigid registration to template 
+ skull stripping

Grey matter 
segmentation

Extraction of regional 
averages



Image preprocessing 16

Statistical Parametric Mapping (SPM)
• www.fil.ion.ucl.ac.uk/spm
• Modalities: Structural and functional MRI, 

PET, SPECT, EEG, MEG
• Features: preprocessing, modelling, 

statistical inference, voxel-based 
morphometry, connectivity analysis

Frackowiak, Friston, Frith, Dolan, and Mazziotta, editors. 
Human Brain Function. Academic Press USA, 1997

Advanced Normalization Tools (ANTs)
• http://stnava.github.io/ANTs
• Modalities: Structural, functional, diffusion 

MRI, PET

• Features: bias field correction, registration, 
segmentation, cortical thickness estimation

FMRIB Software Library (FSL)
• https://fsl.fmrib.ox.ac.uk
• Modalities: Structural, functional, diffusion 

MRI

• Features: brain extraction, segmentation, 
registration, tractography, longitudinal 
analysis, statistical analysis

Jenkinson et al., NeuroImage, 2012

FreeSurfer
• https://surfer.nmr.mgh.harvard.edu
• Modalities: Structural, functional, diffusion 

MRI

• Features: skullstripping, registration, cortical 
surface reconstruction, segmentation, 
longitudinal processing, fMRI analysis, 
tractography

Fischl, NeuroImage, 2012

Avants et al., Frontiers in Neuroinformatics, 2014



Clinica image (pre)processing pipelines 17

Anatomical MRI (T1-weighted)
• t1-linear Bias field correction and affine registration to standard space using ANTs

• t1-volume Tissue segmentation, spatial normalization and parcellation using SPM

• t1-freesurfer Cortical surface extraction, spatial normalization and parcellation using FreeSurfer

Diffusion MRI (DWI)
• dwi-preprocessing-* Correction of head motion, magnetic susceptibility, eddy current and

bias field induced distortions

• dwi-dti Extraction of DTI-based measures and spatial normalization
• dwi-connectome Computation of fiber orientation distributions, tractogram and connectome

Positron emission tomography (PET)
• pet-volume Registration to T1w MRI, intensity normalization, partial volume correction and spatial

normalization

• pet-surface Registration to T1w MRI, intensity normalization, partial volume correction, projection
of the PET signal onto the subject’s cortical surface and spatial normalization



Classifiers 18

Pedregosa et al., JMLR, 2011; Samper-González et al., NeuroImage, 2018

Linear SVM ℓ2 logistic regression Random forest



Classifiers 19

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

3D subject-level CNN 3D patch-level CNN

2D slice-level CNN

Convolutional neural networks



Cross-validation procedures 20

Samper-González et al., NeuroImage, 2018 

Nested cross-validation

• Outer loop

• Nested loop

Repeated hold-out(Repeated) k-fold
Whole dataset

Train

Whole dataset

Train

be employed: the data are repeatedly split in a validation set and a
decoding set to perform decoding. The decoding set itself is split in
multiple train and test sets with the same validation set, forming an
inner “nested” cross-validation loop used to set the regularization
hyper-parameter, while the external loop varying the validation set is
used to measure prediction performance –see Fig. 2.

Model averaging. Choosing the best model in a family of good
models is hard. One option is to average the predictions of a set of
suitable models (Penny et al., 2007, chap. 35, Kuncheva and Rodríguez,
2010, Churchill et al., 2014, Hoyos-Idrobo et al., 2015) –see Hastie
et al. (2009, chap. 8) for a description outside of neuroimaging. A
simple version of this idea is bagging (Breiman, 1996): using boot-
strap, random resamplings of the data, to generate many train sets and
corresponding models, the predictions of which are then averaged. The
benefit of these approaches is that if the errors of each model are
sufficiently independent, they average out: the average model performs
better and displays much less variance. With linear models often used
as decoders in neuroimaging, model averaging is appealing as it boils
down to averaging weight maps.

To benefit from the stabilizing effect of model averaging in
parameter tuning, we can use a variant of both cross-validation and
model averaging.5 In a standard cross-validation procedure, we
repeatedly split the data in train and test set and for each split,
compute the test error for a grid of hyper-parameter values. However,
instead of selecting the hyper-parameter value that minimizes the
mean test error across the different splits, we select for each split the
model that minimizes the corresponding test error and average these
models across splits.

2.3. Model selection for neuroimaging decoders

Decoding in neuroimaging faces specific model-selection chal-
lenges. The main challenge is probably the scarcity of data relative to
their dimensionality, typically hundreds of observations.6 Another
important aspect of decoding is that, beyond predictive power, inter-
preting model weights is relevant.

Common decoders and their regularization. Both to prefer simpler
models and to facilitate interpretation, linear models are ubiquitous in
decoding. In fact, their weights form the common brain maps for visual
interpretation.

The classifier used most often in fMRI is the support vector machine
(SVM) (Mouro-Miranda et al., 2005; Chen et al., 2006; LaConte et al.,
2005). However, logistic regressions (Log-Reg) are also often used (Ryali
et al., 2010; Varoquaux et al., 2012; Chen et al., 2006; Yamashita, 2008;
Rasmussen et al., 2012). Both of these classifiers learn a linear model by
minimizing the sum of a loss 3 –a data-fit term– and a penalty p –the

regularizing energy term that favors simpler mod-

els:

where C is the regularization parameter that controls the bias-
variance tradeoff: small C means strong regularization. The SVM and
logistic regression model differ only by the loss used. For the SVM the
loss is a hinge loss: flat and exactly zero for well-classified samples and
with a misclassification cost increasing linearly with distance to the
decision boundary. For the logistic regression, it is a logistic loss, which
is a soft, exponentially-decreasing, version of the hinge (Hastie et al.,
2009). By far the most common regularization is the ℓ2 penalty. Indeed,
the common form of SVM uses ℓ2 regularization, which we will denote
SVM-ℓ2. Combined with the large zero region of the hinge loss, strong ℓ2
penalty implies that SVMs build their decision functions by combining
a small number of training images (see Fig. 3). Logistic regression is
similar: the loss has no flat region, and thus every sample is used, but
some very weakly. Another frequent form of penalty, ℓ1, imposes
sparsity on the weights: a strong regularization means that the weight
maps w are mostly comprised of zero voxels (see Fig. 4).

Parameter-tuning in neuroimaging. In neuroimaging, many pub-
lications do not discuss their choice of decoder hyper-parameters;
while others state that they use the default value, e.g. C=1 for SVMs.
Standard machine learning practice advocates setting the parameters
by nested cross-validation (Hastie et al., 2009). For non sparse, ℓ2-
penalized models, the amount of regularization often does not have a
strong influence on the weight maps of the decoder (see Fig. 4). Indeed,
regularization in these models changes the fraction of input maps
supporting the hyperplane (see 3). As activation maps for the same
condition often have similar aspects, this fraction impacts weakly
decoders' maps.

For sparse models, using the ℓ1 penalty, sparsity is often seen as a
means to select relevant voxels for prediction (Carroll et al., 2009; Ryali
et al., 2010). In this case, the amount of regularization has a very
visible consequence on weight maps and voxel selection (see Fig. 4).
Neuroimaging studies often set it by cross-validation (Carroll et al.,
2009), though very seldom nested (exceptions comprise (Churchill
et al., 2014; Varoquaux et al., 2012)). Voxel selection by ℓ1 penalty on
brain maps is unstable because neighboring voxels respond similarly
and ℓ1 estimators will choose somewhat randomly few of these
correlated features (Varoquaux et al., 2012; Rondina et al., 2013).
Hence various strategies combining sparse models are used in neuroi-
maging to improve decoding performance and stability. Averaging
weight maps across cross-validation folds (Hoyos-Idrobo et al., 2015;
Varoquaux et al., 2012), as described above, is interesting as it stays in
the realm of linear models. Relatedly, Grosenick et al. (2013) report
median weight maps, thought they do not correspond to weights in a
predictive model. Consensus between sparse models over data pertur-
bations gives theoretically better feature selection (Meinshausen and
Bühlmann, 2010). In fMRI, it has been used to screen voxels before

Validation set

Full data

Test setTrain set

Nested loop

Outer loop

Decoding set

Fig. 2. Nested cross-validation: two cross-validation loops are run one inside the other.

Fig. 3. Regularization with SVM-ℓ2: blue and brown points are training samples of each
class. The SVM learns a separating line between the two classes. In a weakly regularized
setting (large C, this line is supported by few observations –called support vectors–,
circled in black on the figure, while in a strongly-regularized case (small C), it is
supported by the whole data.

5 The combination of cross-validation and model averaging is not new (see e.g.
(Hoyos-Idrobo et al., 2015)), but it is seldom discussed in the neuroimaging literature. It
is commonly used in other areas of machine learning, for instance to set parameters in
bagged models such as trees, by monitoring the out-of-bag error (e.g. in the scikit-learn
library (Pedregosa et al., 2011)).

6 While in imaging neuroscience, hundreds of observations seems acceptably large, it
is markedly below common sample sizes in machine learning. Indeed, data analysis in
brain imaging has historically been driven by very simple models while machine learning
has tackled rich models since its inception.

G. Varoquaux et al.

168

NeuroImage 145 (2017) 166-179

Test set

Validation setTrain set

Adapted from 
Varoquaux et al., 
NeuroImage, 2017



Main causes of data leakage in DL scenarios 21

Train 
classifier

Test 
classifier

Train

• Biased transfer learning

• Late split

• No independent test set

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

Source task (e.g. CN vs AD) Target task (e.g. CN vs MCI)

Train
Train 
classifier

Test
Test 
classifier

Train
Train 
classifier

Test
Test 
classifier

Train Train 
classifier

Test Test 
classifier

Train 
+ 

Test

Biased
feature
selection

subject 123 subject 123
slice #20 

subject 123
slice #50 

Train Test

• Biased within-subject split



Task selection 22

ADNI dataset

• Tasks selected:
• CN vs AD clinical diagnosis classification tasks

• sMCI vs pMCI “predictive” task of the evolution

N Age Gender MMSE CDR

CN 282 74. 3 ± 5.9 [56.2, 89.0] 147 M / 135 F 29.0 ± 1.2 [24, 30] 0: 281; 0.5: 1

sMCI 342 71.8 ± 7.5 [55.0, 88.6] 202 M / 140 F 28.1± 1.6 [23, 30] 0.5: 342

pMCI 167 74.9 ± 6.9 [55.0, 88.3] 98 M / 69 F 27.0 ± 1.7 [24, 30] 0.5: 166; 1: 1

AD 237 74.9 ± 7.8 [55.1, 90.3] 137 M / 100 F 23.2 ± 2.1 [18, 27] 0.5: 99; 1: 137; 2: 1

Values are presented as mean ± SD [range].
M: male, F: female, MMSE: mini-mental state examination, CDR: global clinical dementia rating

Samper-González et al., NeuroImage, 2018 

N Age Gender MMSE CDR

CN 282 74. 3 ± 5.9 [56.2, 89.0] 147 M / 135 F 29.0 ± 1.2 [24, 30] 0: 281; 0.5: 1

MCI 640 72.7 ± 7.5 [55.0, 91.4] 378 M / 262 F 27.8 ± 1.8 [23, 30] 0: 1;  0.5: 638; 1:1

AD 237 74.9 ± 7.8 [55.1, 90.3] 137 M / 100 F 23.2 ± 2.1 [18, 27] 0.5: 99; 1: 137; 2: 1



Machine learning for AD classification 23

Samper-González et al., NeuroImage, 2018;
https://gitlab.icm-institute.org/aramislab/AD-ML

Inputs

Classifier
• Linear SVM
• L2 Logistic regression
• Random forest

CV
• K-fold
• Repeated k-fold
• Repeated hold-out 

Feature types:
• Voxels
• Regions



Machine learning for AD classification 24

Influence of the classifier

Ø Linear SVM and logistic regression with L2 regularization: similar
balanced accuracies

Ø Random forest: consistently lower balanced accuracy



Machine learning for AD classification 25

Influence of the type of features

Ø No systematic effect 

Linear SVM

Voxel-based Region-based

CN vs AD 87% ± 2.6% 84% ± 2.4%

sMCI vs pMCI 66% ± 4.0% 70% ± 3.4%

Balanced accuracy — Values are presented as mean ± SD.

x ϵ ℝ!

where p is the 
number of regions

• Voxel-based features

• Region-based features

x ϵ ℝ!

where p is the 
number of voxels



Machine learning for AD classification 26

Testing dataset Training dataset Voxel-based Region-based

ADNI ADNI 85% ± 4.8% 81% ± 6.0%

AIBL
AIBL 86% ± 4.8% 85% ± 5.8%

OASIS
OASIS 67% ± 6.3% 64% ± 7.2%

Generalisation across datasets

• Task: CN vs AD

• Subsets of equal size for each dataset (CN: 70, AD: 70)
Testing dataset Training dataset Voxel-based Region-based

ADNI ADNI 85% ± 4.8% 81% ± 6.0%

AIBL
AIBL 86% ± 4.8% 85% ± 5.8%

ADNI 86% 87%

OASIS
OASIS 67% ± 6.3% 64% ± 7.2%

ADNI 67% 70%

Ø The classifiers trained on ADNI data generalise well

Balanced accuracy — Values are presented as mean ± SD.



Deep learning for AD classification 27

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020;
https://gitlab.icm-institute.org/aramislab/AD-DL; https://zenodo.org/record/3491003

Inputs

Classifier
• 3D subject-level CNN
• 3D patch-level CNN
• 2D slice-level CNN

CV • K-fold

Preprocessing types:
• Minimal
• Extensive



Deep learning for AD classification 28

Influence of the type of preprocessing

Ø No systematic effect 

3D subject-level CNN

Minimal Extensive

CN vs AD 85% ± 4% 86% ± 6%

Balanced accuracy on the validation set
Values are presented as mean ± SD.

• Minimal preprocessing

• Extensive preprocessing

Bias field correction
+ affine registration

Bias field correction
+ non-rigid registration 

+ skull stripping



Deep learning for AD classification 29

Influence of the type of network architecture

Ø 3D subject-level and 3D patch-level approaches: similar balanced accuracies

Ø 2D-slice approach: consistently lower balanced accuracy

3D subject-level 3D patch-level 3D patch-level 
(hippocampi only)

2D slice-level

CN vs AD 85% 86% 85% 74% 

sMCI vs pMCI 73% 70% 74% -

Balanced accuracy on the test set — Values are presented as mean ± SD.



Deep learning for AD classification 30

Generalisation across datasets

• Training: ADNI

Ø The models trained on ADNI data do not always generalise well

3D subject-level

ADNI AIBL OASIS

CN vs AD 85% 86% 68%

sMCI vs pMCI 73% 50% -

Balanced accuracy on the test set —
Values are presented as mean ± SD.



Deep/machine learning for AD classification 31

Comparison deep learning / machine learning

• Training: ADNI

Ø Machine learning at least as good as deep learning

3D subject-level Linear SVM

ADNI AIBL OASIS ADNI AIBL OASIS

CN vs AD 85% 86% 68% 87% 87% 71%

sMCI vs pMCI 73% 50% - 76% 68% -

Balanced accuracy on the test set — Values are presented as mean ± SD.



Reproducible evaluation of AD classification 32

Evaluation of machine learning and deep learning approaches 
in Alzheimer’s disease
• More reproducible

• Data sharing
• Storing of data using community standards
• Fully automatic data manipulation
• Code sharing

• More objective
• Baseline approaches against which new methods can easily be compared
• Rigorous validation

o Large number of repeated random split to extensively assess the performance variability 
o Reporting of full distribution of metrics
o Adequate nested CV for hyperparameter tuning

Varoquaux et al., NeuroImage, 2017;
Samper-González et al., NeuroImage, 2018; Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020 



Reproducible evaluation of AD classification with Clinica 33

• Clinica
• www.clinica.run
• Preprint: https://hal.inria.fr/hal-02308126

• Reproducible evaluation of AD classification
• Machine learning 

o https://github.com/aramis-lab/AD-ML
o Samper-González et al., NeuroImage, 2018
o Wen et al., Neuroinformatics, 2020

• Deep learning 
o https://gitlab.icm-institute.org/aramislab/AD-DL
o https://zenodo.org/record/3491003
o Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020



Thank you!
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