

Machine Learning in Neuroimaging, what are we talking about?

OHBM 2020 Educational Course

OHBM 2020 A Virtual Experience for Engaging Minds & Empowering Brain Science fn^rs

Christophe Phillips, Ir Ph.D.

Outline

- Pattern recognition framework
- Mass-univariate vs. pattern recognition analysis
- Linear predictive models: classification and regression
- Regularization & kernel methods
- Validation & inference
- Get home message

Pattern recognition

Pattern recognition aims to find patterns/regularities in the data that can be used to take actions (e.g. make predictions).

Digit Recognition

7210414259 0690159734 9665407401 3134727121 1742351244 Face Recognition

Recommendation Engines

- Types of Learning:
 - Supervised learning: trained with labeled data (classification/regression)
 - Unsupervised learning: trained with unlabeled data (clustering)
 - *Reinforcement* learning: actions and rewards (maximize cumulative reward)

Classification model

Class 1 Label = patient Label = patient Label = patient Predictive function: *f* Label = patient Label = patient Class 2 Training 8x10-4 Label = control 0 Label = control Label = control Label = control Label = control

New subject

Prediction: Class membership (patient/control)

Regression model

New subject

Prediction: Score = 28

Mass-univariate vs Pattern recognition

Standard Statistical Analysis (mass-univariate)

Advantages of Pattern Recognition

Multivariate analysis: It can be more sensitive to detect spatially distributed effects.

...but no local inferences.

 Predictive framework: Provides predictions for new examples (e.g. new subjects/images).

...but it typically requires more data!

Extracting features from neuroimaging

3D matrix of

Feature vector

Data dimensionality = number of voxels

Other type of features:

- Volumes of regions of interest (ROIs)
- Connectivity measures
- Cortical Thickness

Classification model

Regression model

Linear predictive models

- Linear predictive models (classifier or regression) are parameterized by a weight vector w and a bias term b.
- The general equation for making predictions for a test example x_* is: Parameters learned/estimated from training data

In the linear case w can be expressed as a linear combination of training examples x_i (N = number of training examples)

 $f(\boldsymbol{x}_*) = \boldsymbol{w} \cdot \boldsymbol{x}_* + \boldsymbol{b}$

$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i \boldsymbol{x}_i$$

Weight maps or predictive patterns

 $f(\boldsymbol{x}_*) = \boldsymbol{w} \cdot \boldsymbol{x}_* + b$

Linear prediction model:

- Shows the relative contribution of each feature for the decision
- No local inferences can be made!

Pattern recognition in neuroimaging

Common issue with neuroimaging applications:

#features (e.g. voxels) >> **#samples** (e.g. subjects)

 \Rightarrow ill-conditioned problems!

Possible solutions:

- Decrease the number of features
 - Region of interest (ROIs)
 - Feature selection strategies (DANGER of double dipping!)
 - Searchlight
- Regularization + Kernel Methods

Regularization

- To find a unique solution & avoid overfitting
- Balance between data-fit L
 & penalty J terms

 $\min_{\boldsymbol{w}\in\mathbb{R}^p}\{L(\boldsymbol{w})+\lambda J(\boldsymbol{w})\}\$

Different choices of L and J lead to different solutions!

Example: Square loss + different J

Kernel Methods

- General framework for classification & regression models
- Relies on 2 parts
 - kernel function $k_{ij} = K(x_i, x_j)$
 - algorithm relying on kernel formalism
- Advantages
 - general approach for regularization
 - computational efficiency
 - "kernel trick" (linear & non-linear kernels) to measure "sample similarity"

Kernel methods & Multi-kernel learning

$$f(\boldsymbol{x}_*) = \boldsymbol{w} \cdot \boldsymbol{x}_* + b$$
 where $\boldsymbol{w} = \sum_{i=1}^N \alpha_i \boldsymbol{x}_i$

- $\rightarrow f(\mathbf{x}_*) = \sum_{i=1}^N \alpha_i \mathbf{x}_i \cdot \mathbf{x}_* + b$
- $\rightarrow f(\mathbf{x}_*) = \sum_{i=1}^N \alpha_i K(\mathbf{x}_i, \mathbf{x}_*) + b$
- Example of kernel methods:
 Support Vector Machines (SVM), Kernel Ridge Regression (KRR), Gaussian Process (GP), Kernel Fisher Discriminant, Relevance Vector Regression,...
- "Multi-kernel learning" \equiv combine M sub-kernels $K(x_i, x_j) = \sum_{m=1}^{M} d_m K_m(x_i, x_j)$ with $d_m \ge 0$ and $\sum_{m=1}^{M} d_m = 1$ then learn kernel weight d_m and decision function (w, b).

Support Vector Machine

 $(\boldsymbol{w}\cdot\boldsymbol{x}_i+b)>0$

- Relies on kernel representation
- "maximum margin" ρ classifier

- "Support vectors" have $\alpha_i \neq 0$
- Fast & resilient estimation
- ...but only "hard binary" prediction!

 $(\boldsymbol{w}\cdot\boldsymbol{x}_i+b)$

 $(\boldsymbol{w}, \boldsymbol{b})$

Validation principle

\rightarrow Out of sample prediction!

Prediction assessment

► Classification → confusion matrix

- Accuracy: total, class specific, or balanced

$$A_{\text{tot}} = \frac{A+D}{A+B+C+D}$$
, $A_{c1} = \frac{A}{A+B} \& A_{c0} = \frac{D}{C+D}$,

or
$$A_{bal} = \frac{A_{c1} + A_{c0}}{2}$$

- Sensitivity & specificity
- Positive/negative predictive value
- Regression \rightarrow mean squared error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$

(or correlation between true & predicted scores)

Model inference

- H₀: "no link between features and target"
- ► Test statistic, e.g. cross-validation (CV) accuracy A
- Estimate distribution of test statistic under H₀
 - Random permutation of labels
 - \rightarrow Estimate CV accuracy, A_m
 - \rightarrow Repeat *M* times
- Calculate p-value p as

$$p = \frac{1}{M} \sum_{m=1}^{M} \# (A_m \ge A)$$

Conclusions

Univariate

- 1 voxel
- ▶ Target \rightarrow Data
- Look for difference or correlation
- General Linear Model
- GLM inversion
 - \rightarrow parameter & error terms
- Inference on contrast of interest
- ▶ Voxel/cluster activation inference
 → localisation

Multivariate

- 1 volume
- ▶ Data \rightarrow Target
- Look for similarity or score
- Specific machine
- Machine training
 → machine parameters
- Prediction accuracy with CV
- Sample label prediction inference
 → no localisation

@CodeWisdom

"A computer is like a mischievous genie. It will give you exactly what you ask for, but not always what you want."

- Joe Sondow

References

Reviews:

- Haynes and Rees (2006) Decoding mental states from brain activity in humans. Nat. Rev. Neurosci., 7, 523-534
- Pereira, Mitchell, Botnivik (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 45, S199-S209

Books:

- Hastie , Tibishirani, Friedman (2003) Elements of Statistical Learning. Springer
- Shawe-Taylor and Christianini (2004) Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press.
- Bishop, Jordan, Kleinberg, Schölkopf (2006) Pattern Recognition and Machine learning. Springer

Machines:

- Burges (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121–167.
- Rasmussen, Williams (2006) Gaussian Processes for Machine Learning. The MIT Press.
- Tipping (2001) Sparse Bayesian Learning and the Relevance Vector Machine Journal of Machine Learning Research, 1, 211-244
- Breiman (1996) Bagging Predictors Machine Learning, 24, 123-140
- Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning Research, 9, 2491-2521.

Thank you for your attention!