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— deep learning models (the hype)

Deep Reinforcement Learning Panoptic Segmentation : Self Driving Cars

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement
learning." arXiv preprint arXiv:1312.5602 (2013). Mohan & Valada (2020)

3-d Facial Recognition from 2-d

Sela et al. “Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation” (2017)
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—— new discoveries from deep learning

« General wisdom: radiologists should examine the tumor borders (alone) to

determine staging and predict outcomes

« Convolutional neural network predictions based on texture features from within

the tumor volumes are diagnostic of cerebral gliomas and survival prediction

Alex,V. Et al. (2017)
Douglas, DB & Wintermark (in  progress)
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4{ overview

What is an Artificial Neural Network?

What is Deep Learning?

How is deep learning useful for neuroimagers?

Resources & Links
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4[ what are artificial neural networks?

a 4\4}_ b Qﬂ}
« neural networks are statistical models loosely <
inspired by biological neurons and their C 4—/4_— , <t
connectivity w
« An early bridge between spiking neural activity . @\ P
and categorization - a hallmark of cognition P YVANE <+
(Kriegeskorte 2015) |
. . . B oV @
* In a classic supervised setting, a NN s =
model learns parameters () that best jj)ﬁ- 4_\4_
approximate a function that maps i <
inputs to the desired outputs h 4—@4— QW}QP\ =

— . _ . T
y=Jf(x;0,w) = ¢(x;0) A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS
1943

PK. Douglas OHBM 2020



« Outputs are a function of these non-linear

4| neural network architecture: basic unit
activations
output

output
l input
.y

non — linearity Y=g Z X, w; + b
i=1 T
summation weights
weights Wi Wy : C :
« They are non-linear; activation functions
introduce non-linearities

inputs X1 b X9

* Like neurons, units receive & summate inputs

from multiple units

Inspired by Figure 1a from Kriegeskorte (2015)
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4{ neural network architecture: basic unit

output ?
« The goal of the model is to approximate a non-linear

non — linearity function that maps input variables {x;} to outputs {yi} by
adjusting weight parameters (w)...

summation

weights Wi Wy

inputs X1 b X9
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— feedforward networks: chain of functions

input layer hidden layer(s)

Xl :—|> hl .

4 output layer

Width A
) e ko

N output layer

depth = length of the chain

+ Feedforward models implement a chain of functions typically represented by acyclic
computational graphs with input, hidden, and output variables represented by nodes

* Weight parameters are represented by links or directed edges between nodes

Bishop , “Pattern Recognition & Machine Learning’” Book
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— universal approximation theorem

inf

+ Afeedforward NN model with at least one hidden layer and nonlinear
activation or squashing function is a universal function approximator

 In practice, one hidden layer is enough to represent (not necessarily learn) an
approximation of any function to an arbitrary degree of accuracy.

Hornik et al. 1989; Cybenko ,1989; Leshno et al. 1993
OHBM 2020
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so..why go deeper?
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— deep learning: hierarchical models (>1 hidden layer)

xl — hl g hl
Xp o Ny, T h,

 Instead of hand crafted or manually engineered features — Deep feedforward
networks learn & discover complex representations composed of simpler

representations through their layers
* This may be useful if a task is comprised of a sequence of multiple steps

» Or if a representation is composed of more simple representations (e.g., vision)

OHBM 2020
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— deep learning: the advantage of depth

« Empirically, depth results in greater generalization

 Often, shallow networks require exponentially more parameters and tend to overfit

& Deep models can represent complex functions more concisely (e.g., Bengio 2009)

« Sparse models with less parameters are less susceptible to numerical issues

 For a fascinating study on numerical issues & reproducibility in
neuroimaging see OHBM poster, “Fuzzy: An Ecosystem for Evaluating the

Stability of Pipelines through Monte Carlo Arithmetic” Kiar et. Al (2020)

Montufar et al. 2014; Goodfellow et al. 2016
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— ingredients for deep learning

) Model Architecture

) Objective/Cost Function
) Optimization Procedure
)

1.
2.
3.

4.) Data
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— large taxonomy of models

Output Q

E
Outout _ror Hidden Output

I
1
v
Inout Input Input

Output

Hidden

Input

* how to choose?
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— 1.) model architecture: design considerations

: ?
Output ‘ Q Q How many Iayers_

| S  How many units?
Hidden C

Input

« Connectivity?

« Too shallow —> too many parameters; Excessive depth can sometimes lead to

vanishing (or rarely, exploding) gradients) (Hochreiter 1991; Bengio et al. 1993)

« No free lunch: averaged over all possible data-generating distributions, every

algorithm will have the same error rate on unseen samples (Wolpert 1996; for

Neuroimaging example, Douglas et al. 2010)

 Biology to constrain network topology: if using deep learning as a model for

brain information processing (Kriegeskorte & Douglas 2018),
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— 2.) objective function

« Objective function: Just like with traditional ML, the objective function computes

the disparity between the model and the training data

« Minimization: If framed as a minimization, it is often called a cost function or a

loss function

MSE
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— maximum likelihood estimation

q Pmodel

true data-generating process

(unobservable)

Pdata

Maximum Likelihood Estimation (MLE):

- provides a framework for estimating model parameters given our training data via optimization;

- can be thought of a as attempt to make model probability distribution, P};04e1 match empirical

distribution, ﬁdata

- special case of maximum a posteriori (MAP) with uniform priors

Myung (2002) A tutorial on Maximum Likelihood Estimation
PK. Douglas OHBM 2020




— maximum likelihood estimation

Goal: find parameters that maximize the likelihood of observing the

data given the model
note : log likelihood is

0, = argmaxz log p,,../x"; 0) more computationally
i efficient

Or equivalently, we can minimize the dissimilarity between

distributions using KL divergence

DKL(ﬁdata | |pm0del) = Ex~ﬁdam[log ﬁdata(x) o lOg pmodel(x)]

training data model

First term does not depend on model, and we are left with the cross-entropy

-k, ﬁdam[ZOg pmodel(x)]
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— 3.) (humerical) optimization procedure

« Minimizing Cost function: The optimization procedure aims to finds the model

parameters that correspond to a good representation of the (training) data, and

the lowest loss/cost

« Finding a minima can be complicated

Loss Surface

Li et al. (2017) https://arxiv.org/pdf/ 1 712.099 | 3.pdf.
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https://arxiv.org/pdf/1712.09913.pdf

—| gradient based learning

single input - take derivative f'(x) Multiple inputs - take gradient
20 0 0 0
| — Vo f) = —f0) +—f)+...—f(»)
\ f 0x; 0x, 0x,,
15 F N Global minimum at x = 0. /-
\ Since f’(x) = 0, gradient y;
10k \ descent halts here. Y ]
N /
N 7
~._ |- . o
0.0 - For x < 0, we have f/(x) A , For = > 0, we have f'(z) >, '/f’%”’"
so we can decrease f b so we can decrease f by -1 ’ /// 7L 7
—0.5 | moving rightward. moving leftward. = ’%’
o e
— . f(z) =327 3 P ’j, DR S
—1.5 | , ] < = =X —»/:——:’—:’—‘ S e
— f@)== e e
—2.0 | | | | | | | i
-20 -15 —-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 SR R
Move in opposite direction from the derivative gradient descent
/
xX'=x—€V,f(x) | |
Stochastic Gradient Descent (SGD): a popular
T choice that randomly selects an example or a mini
Learning rate batch of examples to estimate the expected

gradient for each update
From The Deep Learning Book (Goodfellow, Bengio, Courville)
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— backpropagation: clever way to calculate the gradient

q

Forward Pass: Tells us the Model’s Current Predictions

Iterate until
convergence

Backpropagation: Computes gradient
Gradient Descent: performs learning (iteratively adjust
parameters) based on gradient

Uses the chain rule:

V. S0 = )+ [+~
Xfx_ﬁxl g 0x, g o,

J)

Efficient algorithm that avoids repeating computations

Rumelhart & McClelland 1988
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Which one is most biologically plausible?

— activation function

Tanh or signmoid may resemble current /voltage
relationship for ionlochannels more closely

L. = - = k: ”"
Rectified Linear (RelLu) : used 90% of the time
=
o RelLU 2 A=0.5
1.0 - y 3 = T A=1
8 T T T
0.5 A . = 60
:
0.0 7 Z
—0.5 1 -
-1.0 A ] Membranepotential, mV
tanh Leaky ReLU Fig. 1 Current-voltage relationships for the single barrier model
1.0 1 ] (see Eqn. 32) with zero equilibrium potential. A is the fraction of
the transmembrane potential seen at the barrier peak. Membrane
0.5 7 ] potential is positive inside the cell and current is positive
outward, as usual. Current is plotted in normalized form, as
0.0 7 T I/(const)exp(-G/RT)z FA, see Eqn. 32.
—0.5 A . AZSkE_voked spiking activity, stim. orient. :0°, C = 2
-1.0 - : 4k-".?i ‘ - '
-2 0 2 -2 0 2 c b
. 1-_'.-'-.-"";:-.-,':1. AT N s N BT AT R -*:F"T'i '
For many years, general wisdom amongst 5000 5200 5400 5600
practitioners suggested avoiding the ReLU function, But neural selectivity and firing rates may
due to its flat area. It is now considered the default (sometimes ) be approximately linear -
activation function. resembling ReLU

Figure from Alan Young’s course notes at Johns Hopkins
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— ingredients for deep learning

) Model Architecture
.) Objective/Cost Function
.) Optimization Procedure

@om>

1
2
3
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— data & augmentation

« The more data the more effective the deep learning strategy... MLE

solutions converge to the true parameter value as data increases.

NEY

Data augmentation

Ie%)

1\

AL/l
Qj;dk

« Creating additional data by applying small translations, rotations, cropping,

scaling, and color shifts to your original data can boost generalization

Image from Thomas Hiblot; e.g., Wang & Perez (2017)
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— augmentation with noise

e noise can be useful for regularization, data augmentation & adversarial training.

“teacher noise”

A & f : Y
Blueberry  Chihuahua
muffin

ki
(n &

* noise can be added to inputs, hidden layers, output labels, numerical calculations,

or optimization schemes



— data augmentation

o Left / right flips should be avoided (in neuroimaging)

1/

“Preoperative MR imaging of language in patients with AVMs

Frontal Lobe Language Mapping

Radiological convention?

Pouratian, N, Bookheimer, S. Et al. (2002)

PK. Douglas OHBM 2020



— regularization for deep learning

* Regularization: add a penalty to the cost function, called a regularizer
that tends to result in the model putting less weight (e.g., weight

decay) or weight on fewer parameters (e.g., L1)

~

J(0; X,y) = J(6; X, y) + a£2(0),

« Typically used to penalize complexity or control capacity - especially

useful for small data sets relative to the dimensions
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— regularization for deep learning

X
X

X X

X
X
XX X
XE XX
(b) (c)

dropout (Srivastava et al. 2014)

stochastic rounding (Gupta 2015)

label noise (Rolnick et al. 201 8)

droppath - drop entire layer during training (Larson et al. 2017)
dropblock (shown above; Giasi 2018)

Many others (Shake-Shake, etc)

o U1 MW N —
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— what about convolutional neural networks?

« Traditional matrix multiplication is replaced by convolution in at least one layer
 Convolution similar to "flip & shift” but usually no flip
 Excellent for analyzing grid like topology (e.g., images)

« Has receptive fields - like neurobiology

« Parameter sharing causes equivariance to translation

« Usually kernel is smaller than input -> sparse connectivity

TXTx512

H 14 x Jl’

ﬁ’_ﬁﬁ <4096 1x 1 x 1000

ﬁ] convolution+ReLU

1 max pooling

)
LJ
fully connected+RelLU

| softmax

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks
for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

PK. Douglas OHBM 2020



— CNNs have receptive fields

Convolutional (Artificial) Neural Networks

W, A -7 | Higher Levels
. larger receptive fields;

update slowly; more
10 A ) | representational drift

__________ A _wwul Lower Levels (e.g., V1)
Higher Levels have smaller spatial
larger receptive fields; Y e AV receptive fields; update
indirectly connected to most 1 | rapidly; representations
of image L\ A ) 1l . more stable
Inspired by deep learning book Rule et al. 2020; Parr et al. 2017
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— recurrent neural networks: universal approximators of dynamics

The brain is a deep and complex recurrent neural network.
(Kriegeskorte 2015)

Feedforward Recurrent

(L4

Universal Function Universal
Approximators Approximators of
dynamic systems

Schafer & Zimmermann 2007
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—| how are deep learning models useful for neuroimagers?
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— representational models & group membership

 Local interpretation - rank explanatory power of input features / voxels

(Sub)Cortical Morphology

ower s tra 1
a ‘ - -
JVL.‘«" b Vil (/ )
X ADHD QDHD—I/
)
‘,‘4‘{\(, [ Voting — Subtype assignment —
Bl (3ADHDvs. 2TD) (most common in training set)

/T n\)

MLP for ADHD/TD classification
Colby et al. (2012)

Patch
extraction

Multi-modal
input images
2@ |I=1=1)

Patch-level
feature learning

MRI

Image-level

classifier learning

Patch-level
SVM leaming

Spatially distributed
“mega-patch”
construction

\j
Weighted ensemble
SVM classifier
learning
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— interpreting relevance maps requires great care

« Many saliency methods exist, but may require tuning hyper parameters or determining

appropriate reference points in order to be robust against adversarial or didactic perturbation

“Ground Truth”
Panda

Layer wise relevance propagation
(Bach et al. 2015)

(adversarial) noise .'
common to MRI Setting \\_/

X = X + AegX

Top right = ADHD

didactic perturbation Top Left = TD

\/ \/
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— interpreting relevance maps requires great care

« Many saliency methods exist, but may require tuning hyper parameters or determining

appropriate reference points in order to be robust against adversarial or didactic perturbation

Relevance Structural Similarity Analysis (RSSA)

Rician Noise vs. Original RSSA Caudate RSSA Amygdala

—o— Amygdala
—e—Caudate

Structural Similarity

8
<
% Rician Noise
Original LRP LRP LRP LRP LIME LIME LIME LIME Didactic LRP LIME
(Original) (Rician 5%) (Rician 10%) (Rician 15%) (Original) (Rlcmn 5%) (Rician 10%) (Rician 15%)
[\] : ¥ e
o0 . .
< a ’“ i -"' ; / ‘5 y : - . .
I Ve (1 g | Didactic panda was
missed :(

Caudate

ADHD

Douglas & Farahani (2020)  https://arxiv.org/pdf/2002.06816.pdf
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— LI regularization in linear models produces a similar effect

univariate contrast Least squares LASSO Ridge
map (L1 penalized) (L2 penalized)

\ J
Y

decoding weight maps

“Voxel selection by L1 penalty on brain maps is unstable because neighboring voxels respond
similarly - and L1 estimators will choose somewhat randomly few of these correlated features” -
Varoquaux et al. (2016)

Kriegeskorte & Douglas (Curr Opinion 2019) Available here: https://arxiv.org/pdt/1812.00278.pdf)

PK. Douglas (UCLA, UCF) SCCPNN 2019



— deep learning: brain computational models

04

* Functional interpretation

03

02
resemblance to 3 L2 s

human IT 5220 ;LZ-v .
01 19 e I
. L4 LY

|“‘.! r=0.75***
m . . . n More representational Y -

drift at higher levels

& _o ‘%
T T
E_S 2 L:l L6
(Rule et al. 2019) g1 e T
resemblance to §§§ ' , < =
monkey IT S2& 1o, 2
5‘5%0' L, 1% 2_8-15 27
$88 |- 4
':.@'E‘ of 17
. r=068 "
Internal representations are a useful model for T =
categorization accuracy of model

animate/inanimate (% correct]

representations in visual stream

Guclu & van Gerven (2015) Higher levels that resembled IT performed
better (Khaligh-Razavi et al. (2014)

%» AlexNet

%? Ny m fed weigs Have been useful in explaining human
504 behavioral judgements about object
gz gf similarity (Jozwik et al. (2017)

X g

Kriegeskorte & Douglas (2018)
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— many deep learning models learn “Gabor like” features

* Functional interpretation

Visualizing & Understanding
Sparse Coding Convolutional Networks

SEASINEANIN

.'

Maxout units

Layer 2

Zeiler & Fergus (2013)

IR dENERE
L AN AN 1]
IIIIIIIII!

SRELPERRYEEE
pESl=EdSBERENE

Olshausen & Field (1996)

Goodfellow et al. (2015)

Krizhevsky et al. "ImageNet classification with deep
convolutional neural networks." Advances in neural information
processing systems. 2012. & many more ...
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—1 single model fallacy

® Even a bad model can explain some
variance of the data

e And sometimes, there are many
equivalent “good models”

® From a systems ID point of view, this is
analogous to an experiment or a b

model that is non-uniquely identifiable,

because multiple parameter

combinations work equally well

® |[nterpreting that a single models
explains significant variance as
evidence in favor of that model is the

“Single Model Fallacy”

Kriegeskorte & Douglas (2019) Current Opinion in Neurobiology
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— ingredients for deep learning

) MedetArehitecture. Multiple Candidate Models

1.)
2.) Cost Function

3.) Optimization Procedure
4.)

PK. Douglas OHBM 2020



— conclusions

o Like brains, deep neural networks have feedforward and recurrent
connections, and can have receptive fields, and many parameters

(intelligence systems require sufficient parametric complexity)

« Deep learning can be used for representational models (encoding /decoding)

It may be used for group membership prediction, and decoding studies

« Deep learning models provide some of the best current models for internal

representations and modeling brain information processing

« Qreat care should be used when utilizing saliency methods to ensure they are

robust to perturbations. (We still lack a ground truth for these methods.)

« To avoid the single model fallacy, multiple models should be tested, and they
should be evaluated in terms of the level of generalization they achieve
(same data held out, new measurement - same individual, new individuals,

new stimuli / tasks, etc)

PK. Douglas (UCLA, UCF) UzZH 2020



4[ resources

Explainable Al:
Interpreting, Explaining and
Visualizing Deep Learning

David . ¢ Macxay

-
3
2
3

Information Theory, Inference,
auduanluugodﬂlm

| %, W

* Deep Learning Book : Freely available online
* https://www.deeplearningbook.org
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— resources

OHBM Full Course on Deep Learning (videos, notebooks, slides)
https://brainhack101.github.io/IntroDL/

LeCun course on deep learning
https://cilvr.nyu.edu/doku.php?id=deeplearning2017:schedule

WEKA MOOC

https://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

Reinforcement Learning (D. Silver)
https://www.youtube.com/watch?v=2pWv7GOvuf0

* Nice primer on deep learning for neuroscience (Kriegeskorte 2015):
https://www.biorxiv.org/content/biorxiv/early/2015/10/26/029876.full.pdf

PK. Douglas (UCLA, UCF) UzZH 2020



Many thanks to

Niko Kriegeskorte,

NIVH

National Institute
of Mental Health

Ariana Anderson,
Klaus-Robert Muller

7‘ BRAIN & Gael Varoquaux,

Vo BEHAVIOR

RESLARCH FOL,\DAIIOI\

Alex Gramfort

Alex Binder
Leo Christov Moore

AT AL A ' o . '

“ l‘,‘ \,\ "\\:\ /i/ r’?_ /n \ \\\\ é.t Jelran Chopan

”"" AN, Do - 8 AN - i |
/wu AN AN \ { Farzad Vasheghani Farahani
’//' .‘ “.\ ¢ o\ " ::' élrv». X .\' ~ \ 3 - ' .\'a\-
AL LN SIS A TRy 1
AN \ %\\“ N 1) “\' Paul Thompson

' i B "' VR e LA

Dan Moyer

Susan Bookheimer

W @pkdouglas |6
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