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an introduction 



 deep learning models (the hype)

Sela et al. “Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation” (2017)

Deep Reinforcement Learning

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement 
learning." arXiv preprint arXiv:1312.5602 (2013).

3-d Facial Recognition from 2-d 
images

Mohan & Valada (2020)

Panoptic Segmentation : Self Driving Cars
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Alex, V. Et al. (2017)
Douglas, DB & Wintermark (in  progress)

• General wisdom: radiologists should examine the tumor borders (alone) to 

determine staging and predict outcomes

 new discoveries from deep learning8

Table 3: Performance of the network on local test data (HGG=25 and LGG=15)
Whole Tumor Tumor Core Active Tumor

Mean 0.84 0.84 0.77
Std. Dev. 0.19 0.20 0.19
Median 0.90 0.90 0.83

(a) (b) (c) (d)

Fig. 6: Reduction of False positive using connected components. (a) FLAIR. (b)
Raw Prediction. (c) Post Processed image. (d) Ground Truth. In figures b, c, d,
green- Edema, yellow- Enhancing Tumor, red- Necrotic Core.

The performance of the network on the BraTS 2017 validation set is given in
Table (6). It was observed that the network maintains similar whole tumor scores
on the local test data and on the validation data. However, a dip in performance
was observed in the tumor core & active tumor compartments. The performance
of the proposed technique for survival prediction on the validation data is given
in Table (7).

Table 4: Performance of the network on BraTS 2017 validation data
Whole Tumor Tumor Core Active Tumor

Mean 0.83 0.69 0.72
Std. Dev. 0.16 0.30 0.32
Median 0.90 0.83 0.85

Table 5: Survival prediction on BraTS 2017 validation data
Accuracy MSE Median SE Std SE SpearmanR

0.52 221203.54 59035.10 505184.81 0.27

• Convolutional neural network predictions based on texture features from within 

the tumor volumes are diagnostic of cerebral gliomas and survival prediction 
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 overview

• What is an Artificial Neural Network? 

• What is Deep Learning? 

• How is deep learning useful for neuroimagers?  

• Resources & Links 
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 what are artificial neural networks? 

• neural networks are statistical models loosely 
inspired by biological neurons and their 
connectivity 

• An early bridge between spiking neural activity 
and categorization - a hallmark of cognition 
(Kriegeskorte 2015) 
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A L O G I C A L  C A L C U L U S  O F  T H E  
I D E A S  I M M A N E N T  I N  N E R V O U S  A C T I V I T Y  

WARREN S. MCCULLOCH AND WALTER PITTS 

FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINI~, 
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, 

AND THE UNIVERSITY OF CHICAGO 

Because of  the "all-or-none" character of  nervous activity, neural 
events and the relations among them can be treated by means of propo- 
sitional logic. I t  is found that the behavior of every net can be described 
in these terms, with the addition of more complicated logical means for 
nets containing circles; and that for any logical expression satisfying 
certain conditions, one can find a net behaving in the fashion it describes. 
I t  is shown that many particular choices among possible neurophysiologi- 
cal assumptions are equivalent, in the sense that for every net behav- 
ing under one assumption, there exists another net which behaves un- 
der the other and gives the same results, although perhaps not in the 
same time. Various applications of the calculus are discussed. 

I. Introduction 

T h e o r e t i c a l  n e u r o p h y s i o l o g y  r e s t s  on c e r t a i n  c a r d i n a l  a s s u m p -  
t ions .  T h e  n e r v o u s  s y s t e m  is a n e t  of  neu rons ,  e ach  h a v i n g  a s o m a  
and  a n  axon .  T h e i r  a d j u n c t i o n s ,  o r  s y n a p s e s ,  a r e  a l w a y s  b e t w e e n  the  
a x o n  of  one  n e u r o n  a n d  the  s o m a  of  ano the r .  A t  a n y  i n s t a n t  a n e u r o n  
h a s  some  th resho ld ,  w h i c h  exc i t a t i on  m u s t  exceed  to  i n i t i a t e  a n  im-  
pulse.  This ,  excep t  f o r  the  f a c t  and  t h e  t i m e  of  i t s  occur rence ,  is  de- 
t e r m i n e d  b y  t h e  neu ron ,  no t  b y  the  exc i t a t ion .  F r o m  t h e  p o i n t  o f  ex-  
c i t a t i o n  the  i mpu l se  is p r o p a g a t e d  to  all p a r t s  o f  t h e  neu ron .  T h e  
ve loc i ty  a long  the  a x o n  v a r i e s  d i r ec t ly  w i t h  i ts  d i a m e t e r ,  f r o m  less 
t h a n  one  m e t e r  p e r  second in t h in  axons ,  w h i c h  a r e  usua l ly  shor t ,  to  
m o r e  t h a n  150 m e t e r s  p e r  second in t h i c k  axons ,  wh ich  a r e  u sua l ly  
long .  T h e  t i m e  f o r  a x o n a l  conduc t ion  is consequen t ly  of  l i t t le  i m p o r -  
t ance  in d e t e r m i n i n g  the  t i m e  of  a r r i v a l  o f  i m p u l s e s  a t  po in t s  un-  
equa l ly  r e m o t e  f r o m  the  s a m e  source .  E x c i t a t i o n  a c r o s s  s y n a p s e s  oc- 
c u r s  p r e d o m i n a n t l y  f r o m  a x o n a l  t e r m i n a t i o n s  to  s o m a t a .  I t  is st i l l  a 
m o o t  po in t  w h e t h e r  th i s  depends  upon  i r r e c i p r o c i t y  of  ind iv idua l  syn-  
a p s e s  o r  m e r e l y  upon  p r e v a l e n t  a n a t o m i c a l  conf igura t ions .  T o  sup-  
pose  t he  l a t t e r  r equ i r e s  no h y p o t h e s i s  ad hoc a n d  exp la in s  k n o w n  ex- 
cept ions ,  bu t  a n y  a s s u m p t i o n  as  to  cause  is c o m p a t i b l e  w i t h  t h e  cal-  
culus  to  come.  No  case  is k n o w n  in wh ich  exc i t a t i on  t h r o u g h  a s ing le  
s y n a p s e  h a s  el ic i ted a n e r v o u s  i m p u l s e  in a n y  neu ron ,  w h e r e a s  a n y  

115 

• In a classic supervised setting, a NN 
model learns parameters      that best 
approximate a function that maps 
inputs to the desired outputs  

θ

y = f(x; θ, w) = ϕ(x; θ)T

1943



 neural network architecture: basic unit

• Like neurons, units receive & summate inputs 
from multiple units  
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• They are non-linear; activation functions 
introduce non-linearities  

• Outputs are a function of these non-linear 
activations

̂y = g (
n

∑
i=1

xi wi + b)
input

weights

output

Static non-
linearity

Inspired by Figure 1a from Kriegeskorte (2015)



 neural network architecture: basic unit
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• The goal of the model is to approximate a non-linear 
function that maps input variables {xi} to outputs {yk} by 
adjusting weight parameters (wi)…

yk

x1 x2

∑
w1 w2

non − linearity

weights

inputs

summation

output

b



 feedforward networks: chain of functions

x1

ykx2

xn

h1

h2

hm
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input layer hidden layer(s)

output layer

Width

depth = length of the chain

output layer

• Feedforward models implement a chain of functions typically represented by acyclic 
computational graphs with input, hidden, and output variables represented by nodes 

• Weight parameters are represented by links or directed edges between nodes

Bishop , “Pattern Recognition & Machine Learning” Book



 universal approximation theorem

• A feedforward NN model with at least one hidden layer and nonlinear 
activation or squashing function is a universal function approximator 

• In practice, one hidden layer is enough to represent (not necessarily learn) an 
approximation of any function to an arbitrary degree of accuracy. 
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.

Hornik et al. 1989; Cybenko ,1989; Leshno et al. 1993



 so..why go deeper?  
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 deep learning: hierarchical models (>1 hidden layer)

x1

ykx2

xn

h1

h2

hm
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h1

h2

hm

• Instead of hand crafted or manually engineered features — Deep feedforward 
networks learn & discover complex representations composed of simpler 
representations through their layers 

• This may be useful if a task is comprised of a sequence of multiple steps 

• Or if a representation is composed of more simple representations (e.g., vision)
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 deep learning: the advantage of depth

• Empirically, depth results in greater generalization 

• Often, shallow networks require exponentially more parameters and tend to overfit 

& Deep models can represent complex functions more concisely (e.g., Bengio 2009)  

• Sparse models with less parameters are less susceptible to numerical issues 

• For a fascinating study on numerical issues & reproducibility in 

neuroimaging see OHBM poster, “Fuzzy: An Ecosystem for Evaluating the 

Stability of Pipelines through Monte Carlo Arithmetic” Kiar et. Al (2020)

Montufar et al. 2014; Goodfellow et al. 2016
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Figure 2: (a) Space folding of 2-D Euclidean space along the two coordinate axes. (b) An illustration of
how the top-level partitioning (on the right) is replicated to the original input space (left). (c) Identification
of regions across the layers of a deep model.

The computation carried out by the l-th layer of a feedforward network on a set of activations from the
(l� 1)-th layer is effectively carried out for all regions of the input space that lead to the same activations
of the (l� 1)-th layer. One can choose the input weights and biases of a given layer in such a way that
the computed function behaves most interestingly on those activation values of the preceding layer which
have the largest number of preimages in the input space, thus replicating the interesting computation many
times in the input space and generating an overall complicated-looking function.

For any given choice of the network parameters, each hidden layer l computes a function hl = gl � fl on
the output activations of the preceding layer. We consider the function Fl : Rn0 ! Rnl; Fl := hl � · · ·�h1
that computes the activations of the l-th hidden layer. We denote the image of Fl by Sl ✓ Rnl , i.e., the
set of (vector valued) activations reachable by the l-th layer for all possible inputs. Given a subset R ✓ Sl,
we denote by P l

R the set of subsets R̄1, . . . , R̄k ✓ Sl�1 that are mapped by hl onto R; that is, subsets
that satisfy hl(R̄1) = · · · = hl(R̄k) = R. See Fig. 2 for an illustration.

The number of separate input-space neighborhoods that are mapped to a common neighborhood
R ✓ Sl ✓ Rnl can be given recursively as

N l
R =

X

R02P l
R

N l�1
R0 , N 0

R = 1, for each region R ✓ Rn0. (2)

For example, P1
R is the set of all disjoint input-space neighborhoods whose image by the function

computed by the first layer, h1 : x 7! g(Wx+ b), equals R ✓ S1 ✓ Rn1 .

The recursive formula (2) counts the number of identified sets by moving along the branches of a tree
rooted at the set R of the j-th layer’s output-space (see Fig. 2 (c)). Based on these observations, we can
estimate the maximal number of linear regions as follows.
Lemma 3. The maximal number of linear regions of the functions computed by an L-layer neural network

with piecewise linear activations is at least N =
P

R2PL NL�1
R , where NL�1

R is defined by Eq. (2), and

PL
is a set of neighborhoods in distinct linear regions of the function computed by the last hidden layer.

Here, the idea to construct a function with many linear regions is to use the first L� 1 hidden layers to
identify many input-space neighborhoods, mapping all of them to the activation neighborhoods PL of
the (L� 1)-th hidden layer, each of which belongs to a distinct linear region of the last hidden layer. We
will follow this strategy in Secs. 3 and 4, where we analyze rectifier and maxout networks in detail.

2.4 Identification of Inputs as Space Foldings

In this section, we discuss an intuition behind Lemma 3 in terms of space folding. A map F that identifies
two subsets S and S0 can be considered as an operator that folds its domain in such a way that the two

4

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model
with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled
markers indicate errors made by the shallow model.

with a bounded smooth activation function, or Boolean hidden units. On the other hand, recently it has
become more common to use piecewise linear functions, such as the rectifier activation g(a) = max{0, a}
(Glorot et al. 2011, Nair and Hinton 2010) or the maxout activation g(a1, . . . , ak) = max{a1, . . . , ak}
(Goodfellow et al. 2013). The practical success of deep neural networks with piecewise linear units calls
for the theoretical analysis specific for this type of neural networks.

In this respect, Pascanu et al. (2013) reported a theoretical result on the complexity of functions computable
by deep feedforward networks with rectifier units. They showed that, in the asymptotic limit of many
hidden layers, deep networks are able to separate their input space into exponentially more linear response
regions than their shallow counterparts, despite using the same number of computational units.

Building on the ideas from Pascanu et al. (2013), we develop a general framework for analyzing deep
models with piecewise linear activations. We describe how the intermediary layers of these models
are able to map several pieces of their inputs into the same output. The layer-wise composition of the
functions computed in this way re-uses low-level computations exponentially often as the number of
layers increases. This key property enables deep networks to compute highly complex and structured
functions. We underpin this idea by estimating the number of linear regions of functions computable by
two important types of piecewise linear networks: with rectifier units and with maxout units. Our results
for the complexity of deep rectifier networks yield a significant improvement over the previous results
on rectifier networks mentioned above, showing a favorable behavior of deep over shallow networks even
with a moderate number of hidden layers. Furthermore, our analysis of deep rectifier and maxout networks
provides a platform to study a broad variety of related networks, such as convolutional networks.

The number of linear regions of the functions that can be computed by a given model is a measure of the
model’s flexibility. An example of this is given in Fig. 1, which compares the learned decision boundary of a
single-layer and a two-layer model with the same number of hidden units (see details in the Supplementary
Material). This illustrates the advantage of depth; the deep model captures the desired boundary more
accurately, approximating it with a larger number of linear pieces. As noted earlier, deep networks are able
to identify an exponential number of input neighborhoods by mapping them to a common output of some
intermediary hidden layer. The computations carried out on the activations of this intermediary layer are
replicated many times, once in each of the identified neighborhoods. This allows the networks to compute
very complex looking functions even when they are defined with relatively few parameters. The number
of parameters is an upper bound for the dimension of the set of functions computable by a network, and
a small number of parameters means that the class of computable functions has a low dimension. The
set of functions computable by a deep feedforward piecewise linear network, although low dimensional,
achieves exponential complexity by re-using and composing features from layer to layer.

2 Feedforward Neural Networks and their Compositional Properties

In this section we discuss the ability of deep feedforward networks to re-map their input-space to create
complex symmetries by using only relatively few computational units. The key observation of our analysis
is that each layer of a deep model is able to map different regions of its input to a common output. This
leads to a compositional structure, where computations on higher layers are effectively replicated in all
input regions that produced the same output at a given layer. The capacity to replicate computations over
the input-space grows exponentially with the number of network layers. Before expanding these ideas, we
introduce basic definitions needed in the rest of the paper. At the end of this section, we give an intuitive
perspective for reasoning about the replicative capacity of deep models.

2



 ingredients for deep learning

1.) Model Architecture 
2.) Objective/Cost Function 
3.) Optimization Procedure 
4.) Data
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 large taxonomy of models 

• how to choose?  
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 1.) model architecture: design considerations

• Too shallow —> too many parameters; Excessive depth can sometimes lead to 
vanishing (or rarely, exploding) gradients) (Hochreiter 1991; Bengio et al. 1993) 

• No free lunch: averaged over all possible data-generating distributions, every 
algorithm will have the same error rate on unseen samples (Wolpert 1996; for 
Neuroimaging example, Douglas et al. 2010) 

Hidden

Output

Input

• How many layers?

• How many units?

• Connectivity?

• Biology to constrain network topology: if using deep learning as a model for 
brain information processing (Kriegeskorte & Douglas 2018),  
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 2.) objective function 
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• Minimization:  If framed as a minimization, it is often called a cost function or a 
loss function

• Objective function: Just like with traditional ML, the objective function computes 
the disparity between the model and the training data 

?
MSE



 maximum likelihood estimation

true data-generating process 
(unobservable) 

Maximum Likelihood Estimation (MLE):  

- provides a framework for estimating model parameters given our training data via optimization;  

- can be thought of a as attempt to make model probability distribution,               match empirical 
distribution,  

- special case of maximum a posteriori (MAP) with uniform priors 

pmodel ̂pdata

pdata
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Myung (2002) A tutorial on Maximum Likelihood Estimation

pmodel
̂pdata



 maximum likelihood estimation

Goal: find parameters that maximize the likelihood of observing the 

data given the model
note : log likelihood is 

more computationally 

efficient

Or equivalently, we can minimize the dissimilarity between 

distributions using KL divergence
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First term does not depend on model, and we are left with the cross-entropy

θML = argmax∑
i

log pmodel(x(i); θ)

DKL( ̂pdata | |pmodel) = Ex ̂pdata
[log ̂pdata(x) − log pmodel(x)]~
training data model

−Ex ̂pdata
[log pmodel(x)]~



 3.) (numerical) optimization procedure
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• Minimizing Cost function: The optimization procedure aims to finds the model 
parameters that correspond to a good representation of the (training) data, and 
the lowest loss/cost 

Li et al. (2017) https://arxiv.org/pdf/1712.09913.pdf.

Loss Surface  

• Finding a minima can be complicated

https://arxiv.org/pdf/1712.09913.pdf


 gradient based learning  
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CHAPTER 4. NUMERICAL COMPUTATION
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Global minimum at x = 0.
Since f

0(x) = 0, gradient
descent halts here.

For x < 0, we have f
0(x) < 0,

so we can decrease f by
moving rightward.

For x > 0, we have f
0(x) > 0,

so we can decrease f by
moving leftward.

f(x) = 1
2x

2

f
0(x) = x

Figure 4.1: An illustration of how the gradient descent algorithm uses the derivatives of a
function can be used to follow the function downhill to a minimum.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(x), where both x and y are real numbers.
The derivative of this function is denoted as f 0(x) or as dy

dx
. The derivative f 0(x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(x + ✏) ⇡ f(x) + ✏f 0(x).

The derivative is therefore useful for minimizing a function because it tells
us how to change x in order to make a small improvement in y. For example,
we know that f(x � ✏ sign(f 0(x))) is less than f(x) for small enough ✏. We can
thus reduce f(x) by moving x in small steps with opposite sign of the derivative.
This technique is called gradient descent (Cauchy, 1847). See figure 4.1 for an
example of this technique.

When f 0(x) = 0, the derivative provides no information about which direction
to move. Points where f 0(x) = 0 are known as critical points or stationary
points. A local minimum is a point where f(x) is lower than at all neighboring
points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
A local maximum is a point where f(x) is higher than at all neighboring points,

83

Move in opposite direction from the derivative

From The Deep Learning Book (Goodfellow, Bengio, Courville) 

single input - take derivative f’(x)

gradient descent 

∇x f (x) =
∂

∂x1
f (x) +

∂
∂x2

f (x) + . . .
∂

∂xn
f (x)

Multiple inputs - take gradient

Stochastic Gradient Descent (SGD): a popular 
choice that randomly selects an example or a mini 
batch of examples to estimate the expected 
gradient for each update

x′ � = x − ϵ∇x f(x)

Learning rate 



 backpropagation: clever way to calculate the gradient
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Uses the chain rule: 

∇x f (x) =
∂

∂x1
f (x) +

∂
∂x2

f (x) + . . .
∂

∂xn
f (x)

Rumelhart & McClelland 1988

Forward Pass: Tells us the Model’s Current Predictions

Backpropagation: Computes gradient  
Gradient Descent: performs learning (iteratively adjust 
parameters) based on gradient

Efficient algorithm that avoids repeating computations 

Iterate until 
convergence 



 activation function

For many years, general wisdom amongst 
practitioners suggested avoiding the ReLU function, 
due to its flat area.  It is now considered the default 
activation function.

Tanh or signmoid may resemble current /voltage 
relationship for ion channels more closely

      P.K. Douglas         OHBM 2020
Figure from Alan Young’s course notes at Johns Hopkins

Which one is most biologically plausible?

But neural selectivity and firing rates may 
(sometimes ) be approximately linear - 
resembling ReLU

Rectified Linear (ReLu) : used 90% of the time



 ingredients for deep learning

1.) Model Architecture 
2.) Objective/Cost Function 
3.) Optimization Procedure 
4.) Data
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 data & augmentation

• Creating additional data by applying small translations, rotations, cropping, 
scaling, and color shifts to your original data can boost generalization
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• The more data the more effective the deep learning strategy… MLE 
solutions converge to the true parameter value as data increases.

Image from Thomas Hiblot; e.g., Wang & Perez (2017)



• noise can be added to inputs, hidden layers, output labels, numerical calculations, 
or optimization schemes 

+

Blueberry 
muffin

Chihuahua

“teacher noise”

+

• noise can be useful for regularization, data augmentation & adversarial training. 

 augmentation with noise



 data augmentation

• Left / right flips should be avoided (in neuroimaging)
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Radiological convention?

N. Pouratian, et al.

28 Neurosurg. Focus / Volume 13 / October, 2002

FIG. 5. Examples of language mapping in the frontal lobe (A) and the combined temporal and parietal lobes (B). Yel-
low and green circles represent numbered ESM language sites and clean ESM sites, respectively. Red boxes represent
expression fMR imaging activations. Blue boxes represent comprehension fMR imaging activations. The frontal lobe
slices are shown with an ESM radius of 5 mm (determined to produce the highest sensitivity with the least cost to speci-
ficity) and temporoparietal lobe slices are shown with an ESM radius of 10 mm. A: For frontal lobe mapping, these
brain slices demonstrate that red (expression) activations tend to overlap with,                                   FIG. 5. (continued)➝

Pouratian, N, Bookheimer, S. Et al. (2002)

N. Pouratian, et al.

28Neurosurg. Focus / Volume 13 / October, 2002

FIG. 5.Examples of language mapping in the frontal lobe (A) and the combined temporal and parietal lobes (B). Yel-
lowand green circlesrepresent numbered ESM language sites and clean ESM sites, respectively. Red boxesrepresent
expression fMR imaging activations. Blue boxesrepresent comprehension fMR imaging activations. The frontal lobe
slices are shown with an ESM radius of 5 mm (determined to produce the highest sensitivity with the least cost to speci-
ficity) and temporoparietal lobe slices are shown with an ESM radius of 10 mm.A: For frontal lobe mapping, these
brain slices demonstrate that red(expression) activations tend to overlap with,                                   FIG. 5. (continued)➝

“Preoperative fMR imaging of language in patients with AVMs” 



 regularization for deep learning

• Regularization: add a penalty to the cost function, called a regularizer 
that tends to result in the model putting less weight (e.g., weight 
decay) or weight on fewer parameters (e.g., L1)
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• Typically used to penalize complexity or control capacity - especially 
useful for small data sets relative to the dimensions



1. dropout (Srivastava et al. 2014) 
2. stochastic rounding (Gupta 2015)
3. label noise (Rolnick et al. 2018)
4. droppath - drop entire layer during training (Larson et al. 2017)
5. dropblock (shown above; Giasi 2018)
6. Many others (Shake-Shake, etc)

(a) (b) (c)

Figure 1: (a) input image to a convolutional neural network. The green regions in (b) and (c) include
the activation units which contain semantic information in the input image. Dropping out activations
at random is not effective in removing semantic information because nearby activations contain
closely related information. Instead, dropping continuous regions can remove certain semantic
information (e.g., head or feet) and consequently enforcing remaining units to learn features for
classifying input image.

2 Related work

Since its introduction, dropout [1] has inspired a number of regularization methods for neural
networks such as DropConnect [14], maxout [15], StochasticDepth [16], DropPath [17], Sched-
uledDropPath [8], shake-shake regularization [18], and ShakeDrop regularization [19]. The basic
principle behind these methods is to inject noise into neural networks so that they do not overfit the
training data. When it comes to convolutional neural networks, most successful methods require the
noise to be structured [16, 17, 8, 18, 19, 20]. For example, in DropPath, an entire layer in the neural
network is zeroed out of training, not just a particular unit. Although these strategies of dropping out
layers may work well for layers with many input or output branches, they cannot be used for layers
without any branches. Our method, DropBlock, is more general in that it can be applied anywhere
in a convolutional network. Our method is closely related to SpatialDropout [20], where an entire
channel is dropped from a feature map. Our experiments show that DropBlock is more effective than
SpatialDropout.

The developments of these noise injection techniques specific to the architectures are not unique to
convolutional networks. In fact, similar to convolutional networks, recurrent networks require their
own noise injection methods. Currently, Variational Dropout [21] and ZoneOut [22] are two of the
most commonly used methods to inject noise to recurrent connections.

Our method is inspired by Cutout [23], a data augmentation method where parts of the input
examples are zeroed out. DropBlock generalizes Cutout by applying Cutout at every feature map in
a convolutional networks. In our experiments, having a fixed zero-out ratio for DropBlock during
training is not as robust as having an increasing schedule for the ratio during training. In other words,
it’s better to set the DropBlock ratio to be small initially during training, and linearly increase it over
time during training. This scheduling scheme is related to ScheduledDropPath [8].

3 DropBlock

DropBlock is a simple method similar to dropout. Its main difference from dropout is that it drops
contiguous regions from a feature map of a layer instead of dropping out independent random units.
Pseudocode of DropBlock is shown in Algorithm 1. DropBlock has two main parameters which
are block_size and �. block_size is the size of the block to be dropped, and �, controls how many
activation units to drop.

We experimented with a shared DropBlock mask across different feature channels or each feature
channel has its DropBlock mask. Algorithm 1 corresponds to the latter, which tends to work better in
our experiments.

2
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 regularization for deep learning



 what about convolutional neural networks?

• Traditional matrix multiplication is replaced by convolution in at least one layer 

• Convolution similar to “flip & shift” but usually no flip 

• Excellent for analyzing grid like topology (e.g., images) 

• Has receptive fields - like neurobiology 

• Parameter sharing causes equivariance to translation 

• Usually kernel is smaller than input -> sparse connectivity

      P.K. Douglas         OHBM 2020

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks 
for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).



Lower Levels (e.g., V1) 
have smaller spatial 
receptive fields; update 
rapidly; representations 
more stable 

Rule et al. 2020; Parr et al. 2017

      P.K. Douglas         OHBM 2020

 CNNs have receptive fields 

Higher Levels  
larger receptive fields; 
update slowly; more 
representational drift

Higher Levels  
larger receptive fields; 
indirectly connected to most 
of image

Biological Neural NetworksConvolutional (Artificial)  Neural Networks

Inspired by deep learning book



 recurrent neural networks: universal approximators of dynamics

The brain is a deep and complex recurrent neural network. 
(Kriegeskorte 2015)

      P.K. Douglas         OHBM 2020

Universal Function 
Approximators

Feedforward Recurrent

Universal 
Approximators of 
dynamic systems 

Schäfer & Zimmermann 2007



 how are deep learning models useful for neuroimagers?
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 representational models & group membership 

• Local interpretation - rank explanatory power of input features / voxels

      P.K. Douglas         OHBM 2020

MLP for ADHD/TD classification 
Colby et al. (2012)

Alzheimers / MCI (Suk et al. 2014)



 interpreting relevance maps requires great care  

• Many saliency methods exist, but may require tuning hyper parameters or determining 
appropriate reference points in order to be robust against adversarial or didactic perturbation

      P.K. Douglas         OHBM 2020

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 7

Fig. 12. Graphical depiction of the relevance redistribution process for one neuron, 
with different parameters α and β . Positive relevance is shown in red. Negative 
relevance is shown in blue. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 13. LRP explanations when choosing different LRP parameters α and β . Positive 
and negative relevance are shown in red and blue respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

R j =
∑

k

a j w+
jk∑

j a j w+
jk

R∧
k +

∑

k

a j w−
jk∑

j a j w−
jk

R∨
k ,

where R∧
k = αRk and R∨

k = −βRk . It can now be interpreted as 
follows:

Relevance R∧
k should be redistributed to the lower-layer neurons 

(a j) j in proportion to their excitatory effect on ak. “Counter-rele-
vance” R∨

k should be redistributed to the lower-layer neurons (a j) j
in proportion to their inhibitory effect on ak.

Different combinations of parameters α, β were shown to mod-
ulate the qualitative behavior of the resulting explanation. As a 
naming convention, we denote, for example, by LRP-α2β1, the fact 
of having chosen the parameters α = 2 and β = 1 for this rule.

Fig. 12 depicts the redistribution process for a neuron with pos-
itive inputs and weights (w jk) j = (1, 0, −1). The higher α and β , 
the more positive and negative relevance are being created in the 
propagation phase.

Examples of explanations obtained with different values of α
and β are given in Fig. 13 for MNIST digits predicted by a convo-
lutional DNN. Unless stated otherwise, we use in all experiments 
the same parameters α and β for each hidden layer, except for the 
first layer, where we use a pixel-specific rule given later in Eq. (8).

When α = 1, the heatmaps contain only positive relevance, and 
the latter is spread along the contour of the digits in a fairly uni-
form manner. When choosing α = 2, some regions in the images 
become negatively relevant (e.g. the broken upper-loop of the last 
digit “8”), but the negative relevance still amounts to only 5% of 
the total relevance. When setting the higher value α = 3, negative 
relevance starts to appear in a seemingly random fashion, with the 
share of total relevance surging to 30%. For this simple example, a 
good choice of propagation rule is LRP-α2β1.

On the deeper BVLC CaffeNet [28] for image recognition, 
LRP-α2β1 was also shown to work well [5]. For the very deep 

Fig. 14. Diagram of the relevance neuron, its analysis, and the relevance propagation 
resulting from the analysis. The root search segment is shown in blue. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

GoogleNet [67], however, LRP-α1β0 was found to be more stable 
[46].

When choosing the parameters α = 1 and β = 0, the propaga-
tion rule reduces to the simpler rule:

R j =
∑

k

a j w+
jk∑

j a j w+
jk

Rk. (4)

This simpler rule allows for an interpretation of LRP as a deep Tay-
lor decomposition [46], that we present below. The same simple 
rule was also used later by Zhang et al. [75] as part of an explana-
tion method called excitation backprop.

5.2. LRP and deep Taylor decomposition

In this section, we show for deep ReLU networks a connection 
between LRP-α1β0 and Taylor decomposition. We show in particu-
lar that when neurons are defined as

ak = max
(
0,

∑
j a j w jk + bk

)
with bk ≤ 0,

the application of LRP-α1β0 at a given layer can be seen as com-
puting a Taylor decomposition of the relevance at that layer onto 
the lower layer. The name “deep Taylor decomposition” then arises 
from the iterative application of Taylor decomposition from the 
top layer down to the input layer. The analysis relies on a special 
structure of the relevance scores Rk at each layer, which have to 
be the product of the corresponding neuron activations and posi-
tive constant terms. This assumption is necessary in order to apply 
the Taylor decomposition framework to these neurons. Similarly, 
the Taylor decomposition procedure must also ensure that result-
ing relevances in the lower layer have the same product structure, 
so that relevance can be further propagated backwards.

Let us assume that the relevance for the neuron k can be writ-
ten as Rk = akck , a product of the neuron activation ak and a term 
ck that is constant and positive. These two properties allow us to 
construct a “relevance neuron”

Rk = max
(
0,

∑
j a j w ′

jk + b′
k

)
, (5)

with parameters w ′
jk = w jkck and b′

k = bkck . The relevance neuron 
Rk is shown graphically in Fig. 14(a), and as a function of (a j) j
in Fig. 14(b). The gradient of grays depicts the neuron’s linear ac-
tivation domain, and the dashed line indicates the hinge of that 
function.

We now would like to propagate the relevance to the lower 
layer. For this, we perform a Taylor decomposition of Rk . Because 
the relevance neuron is linear on its activated domain, one can 
always take a root point at the limit of zero activation. Thus, the 
Taylor expansion at this root point contains only first-order terms 
and is given by

Rk =
∑

j

∂ Rk

∂a j

∣∣∣
(̃a j) j

· (a j − ã j)

︸ ︷︷ ︸
R j←k

. (6)

(adversarial) noise 
common to MRI Setting

didactic perturbation

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Layer wise relevance propagation 
(Bach et al. 2015)

“Ground Truth” 
Panda

Top right = ADHD 
Top Left = TD



 interpreting relevance maps requires great care  

• Many saliency methods exist, but may require tuning hyper parameters or determining 
appropriate reference points in order to be robust against adversarial or didactic perturbation

      P.K. Douglas         OHBM 2020
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Didactic panda was 
missed :(

Douglas & Farahani (2020) https://arxiv.org/pdf/2002.06816.pdf



 L1 regularization in linear models produces a similar effect

Kriegeskorte & Douglas (Curr Opinion 2019) Available here: https://arxiv.org/pdf/1812.00278.pdf)

“Voxel selection by L1 penalty on brain maps is unstable because neighboring voxels respond 
similarly -  and L1 estimators will choose somewhat randomly few of these correlated features”  - 
Varoquaux et al. (2016) 

P.K. Douglas (UCLA, UCF) SCCPNN 2019



 deep learning: brain computational models 

• Functional interpretation

Guclu & van Gerven (2015) Higher levels that resembled IT performed 
better (Khaligh-Razavi et al. (2014)

Internal representations are a useful model for 
representations in visual stream

Have been useful in explaining human 
behavioral judgements about object 

similarity (Jozwik et al. (2017)

Kriegeskorte & Douglas (2018)

      P.K. Douglas         OHBM 2020

More representational 

drift at higher levels 

(Rule et al. 2019)



 many deep learning models learn “Gabor like” features 

P.K. Douglas (UCLA, UCF) UZH 2020

• Functional interpretation

Krizhevsky et al. ”ImageNet classification with deep 
convolutional neural networks." Advances in neural information 

processing systems. 2012.

Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Zeiler & Fergus (2013)

SPARSE CODING WITH AN OVERCOMPLETE BASIS SET: A STRATEGY EMPLOYED BY VI? 3319 

m 

~J 

/! 

I 

II 
II 
II 
II 

II 

FIGURE 7. The set of 144 basis functions learned by the sparse coding algorithm. The basis functions are totally overlapping 
(i.e., the entire set codes for the same image patch). All have been normalized to fill the grey scale, but with zero always 

represented by the same grey level. 

1994; Daugman, 1989). Shown in Fig. 8 is the 
distribution of the basis functions in spatial frequency 
and orientation. The vast majority lie within the high 
spatial-frequency bands, as expected of a wavelet code in 
order to form a complete tiling of space and spatial 
frequency. Note, however, that the basis functions 
deviate somewhat from strict self-similarity in that the 
high spatial-frequency functions have more wobbles (are 
more narrowly tuned in log-frequency) than the low 
spatial-frequency functions. Characterizing the band- 
width vs spatial-frequency relationship more adequately 
will require simulations over larger window sizes in order 
to span a larger range of spatial frequencies. 

Although the number of basis functions equals the 
number of input pixels, the representation is effectively 
about 1.5-times overcomplete (this one can discern by 
observing that the eigenvalues of the input covariance 
matrix, as well as the singular values of the 4) matrix, 

begin to drop off sharply at about 100 dimensions). The 
effect of sparsification with an overcomplete representa- 
tion is demonstrated in Fig. 9. Here we compare the 
distribution of activity obtained with a purely feedfor- 
ward computation: 

bi ~- Z ~ i ( - ~ ) / ( " ~ )  (22)  

to the sparsified coefficient values, ai. One can readily see 
that in the latter case, the sparseness cost function shifts 
the responsibility for coding the structure onto only those 
units that best match the structure, silencing the other 
units. Thus, the input-output relationship for any given 
unit will be somewhat non-linear, with units becoming 
more selective in what aspects of the image they respond 
to. Because of this non-linear response property, and 
because there is no closed-form solution for the response 
of each ai to any given image, the "receptive field" of 

Olshausen & Field (1996)

Sparse Coding
Visualizing & Understanding 

Convolutional Networks

& many more …

Maxout units

Goodfellow et al. (2015)



 single model fallacy 

P.K. Douglas (UCLA, UCF) UZH 2020

• Even a bad model can explain some 
variance of the data 

• And sometimes, there are many 
equivalent “good models” 

• From a systems ID point of view, this is 
analogous to an experiment or a 
model that is non-uniquely identifiable, 
because multiple parameter 
combinations work equally well 

• Interpreting that a single models 
explains significant variance as 
evidence in favor of that model is the 
“Single Model Fallacy”

Kriegeskorte & Douglas (2019) Current Opinion in Neurobiology



 ingredients for deep learning

1.) Model Architecture. Multiple Candidate Models 
2.) Cost Function 
3.) Optimization Procedure 
4.) Data

      P.K. Douglas         OHBM 2020



 conclusions

P.K. Douglas (UCLA, UCF) UZH 2020

• Like brains, deep neural networks have feedforward and recurrent 

connections, and can have receptive fields, and many parameters 

(intelligence systems require sufficient parametric complexity) 

• Deep learning can be used for representational models (encoding /decoding) 

It may be used for group membership prediction, and decoding studies  

• Deep learning models provide some of the best current models for internal 

representations and modeling brain information processing 

• Great care should be used when utilizing saliency methods to ensure they are 

robust to perturbations. (We still lack a ground truth for these methods.)   

• To avoid the single model fallacy, multiple models should be tested, and they 

should be evaluated in terms of the level of generalization they achieve 

(same data held out, new measurement - same individual, new individuals, 

new stimuli / tasks, etc)



 resources

P.K. Douglas (UCLA, UCF) UZH 2020

• Deep Learning Book : Freely available online 
• https://www.deeplearningbook.org 



 resources

P.K. Douglas (UCLA, UCF) UZH 2020

• OHBM Full Course on Deep Learning (videos, notebooks, slides) 

• LeCun course on deep learning 

• WEKA MOOC 

• Reinforcement Learning (D. Silver) 

• Nice primer on deep learning for neuroscience (Kriegeskorte 2015): 

https://brainhack101.github.io/IntroDL/

https://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

https://www.youtube.com/watch?v=2pWv7GOvuf0

https://cilvr.nyu.edu/doku.php?id=deeplearning2017:schedule

https://www.biorxiv.org/content/biorxiv/early/2015/10/26/029876.full.pdf
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