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Deep Neural Networks (DNNs) Achieve
State-of-the-Art Performance in Many Fields
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Object Detection Accuracy in Computer Vision
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Classical ML Remains Competitive in Some Domains

Google Research, Scalable & Hospital A

accurate deep learning with | Inpatient Mortality, AUROC'(95% CI)

eleCtr_or?'C healt_h 'records, Deep learning 24 hours after admission 0.95|(0.94-0.96) «—— Deep learning

NPJ Digital Medicine, 2018 | Ryl feature enhanced baseline at 24 hours after admission ~ 0.93/(0.92-0.95) | «— Logistic Regression
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Classical ML Remains Competitive in Some Domains

Google Research, Scalable &
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Commentary

One neuron versus deep learningin
aftershock prediction
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Applications of Deep Learning in Neuroscience

« Models of the brain

« Vision (Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014; Eickenberg
et al., 2017; Bashivan et al., 2019)

 Auditory perception (Kell et al., 2018)
« Reinforcement learning (Dabney et al., 2020)
« Grid cells / navigation (Banino et al., 2018)

« Tools to analyze brain data

 Lesion/tumor segmentation (Pinto et al., 2016; Havaei et al., 2017; Kamnitsas
et al., 2017b; Zhao et al., 2018)

« Anatomical segmentation (Wachinger et al., 2018; Zhao et al., 2018)

 Image modality/quality transfer (Bahrami et al., 2016; Nie et al., 2017;
Blumberg

 Image registration (Yang et al., 2017; Dalca et al., 2018)

- Behavioral and disease prediction (Plis et al., 2014; van der Burgh et al., 2017;
Vieira et al., 2017; Nguyen et al., 2018)



Evidence From Challenges/Competitions
« Advantage: test set is truly hidden

1 BrainAgeDifference 2.9043

Donders Institute, Radboud University

2 BrainAGE 3.0857

University Hospital Jena

3 ARAMIS 3.3284

Brain and Spine Institute Paris

4 Quantum Pika 3.3315
National Yang Ming University

5 sablab 3.3716

Cornell University
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Accurate brain age prediction with lightweight deep neural networks

Han Peng'23*t, Weikang Gong'*, Christian F. Beckmann'3, Andrea Vedaldi?,
Stephen M. Smith’

'Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, OX3
9DU, United Kingdom

2Visual Geometry Group (VGG), University of Oxford, Oxford, OX2 6NN, United
Kingdom

3Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen,
Nijmegen, 6525 EN, The Netherlands

PAC challenge 2019 (https://www.photon-ai.com/pac2019)




Evidence From Challenges/Competitions
« Advantage: test set is truly hidden

@NeilOxtoby

Congrats to our team of @UCL @uclcs . . DI _
researchers who have won the ABCD- Niok Firth @Fimanai4 - may 20

NP Challenge 2019 to predict IQ in 10- ¥ Replying to @NeilOxtoby @ucl and 6 others
year-old children using only brain scans

(MRI) JOIntIy led by me and Janaina ShOCked that deep Iearning didn't win n

Mourao-Miranda, the team included -~ — _
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Neil Oxtoby @NeilOxtoby - May 28
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ABCD Fluid Intelligence Prediction Challenge 2019
(https://sibis.sri.com/abcd-np-challenge/)



Evidence From Challenges/Competitions

« Advantage: test set is truly hidden

 For anatomical/lesion segmentation challenges, deep learning has
consistent winning track record (e.g., Choi et al., 2016; Kamnitsas et
al., 2017, Liet al., 2018)

* For predicting behavior (e.g., fluid intelligence), age & diseases, deep
learning has a more mixed record
« PAC brain age prediction 2019: winning algorithm uses DNN

« ABCD fluid intelligence prediction: 2019: winning algorithm uses kernel
regression

« TADPOLE challenge 2019: winning algorithm uses XGBoost

 Disadvantage: winner based on point estimate of prediction accuracy,
so winner might not be statistically better than next best team =>
benchmarking studies are important



Evidence From Benchmarking Studies

« ~10K subjects (UK Biobank + Human Connectome Project)
« Predict behavior & demographics with resting-state functional connectivity

« Kernel regression (KRR), fully-connected feedforward neural network (FNN), Tong He

BrainNetCNN (Kawahara et al.,
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Evidence From Benchmarking Studies

« ~10K subjects (UK Biobank + Human Connectome Project)
« Predict behavior & demographics with resting-state functional connectivity

« Kernel regression (KRR), fully-connected feedforward neural network (FNN), Tong He
BrainNetCNN (Kawahara et al., 2017) & graph convolutional neural networks (GCNN)

Fluid Intelligence Accuracy (Correlation) In Test Set (N = 1000)
Hyperparameters Tuned With Validation Set (N = 1000)

0.25
0.20 -
0.151 -
0.10- —— Kernel regression
' —— Fully connected neural network
0.05- —— BrainNetCNN (Kawahara 2017)
0.00- Graph convolutional neural network (Parisot 2018)
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He, Neurolmage, 2020



Evidence From Benchmarking Studies

« ~14K subjects (UK Biobank + Human Connectome Project + ABIDE + ACPI)
 Predict using resting-state functional connectivity

concluded that a
carefully designed deep learning based architecture (2D
RCNN) can be a valuable tool for analyzing functional
connectivity. However, Elastic Net probably performs better
at present overall.

Pervaiz et al., Neurolmage, 2020



Evidence From Benchmarking Studies

« Hypothesis: hard to exploit nonlinearity in MRI data?
« Computer Vision: Classical Linear < Classical Nonlinear < Deep Neural Networks

Standard Computer Vision Dataset (MNIST)
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Schulz et al., biorxiv



Evidence From Benchmarking Studies

« Hypothesis: hard to exploit nonlinearity in MRI data?
« Computer Vision: Classical Linear < Classical Nonlinear < Deep Neural Networks
« MRI: Almost equivalent performance across all methods

10-class Age-Sex Prediction using T1-MRI
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Cautionary Tale

« Not claiming deep learning is not useful (we also use DNNs)
« TADPOLE Challenge (ADNI)

« Given 23 multimodal biomarkers at one or more timepoints

 Predict cognitive scores, brain atrophy, clinical diagnosis for every month
(indefinitely) into the future

 Evaluation done for available time points (~5 years in the dataset)

 Challenge: lots of missing data
« CDR available in 70% timepoints
 Flortaucipir PET available in 16% timepoints

« Most studies assume all data present

« Lose a lot of data
« Not realistic in practice

 Our strategy: deep recurrent neural network (RNN) can handle missing
data and model individual’s longitudinal data

Minh Nguyen



RNN Outperforms Baseline Algorithms

« 10-fold Nested Cross-Validation
« Evaluate prediction of diagnosis, ventricular volume, cognition (ADAS)
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Nguyen et al., under revision



RNN Outperforms Baseline Algorithms

« 10-fold Nested Cross-Validation
« Evaluate prediction of diagnosis, ventricular volume, cognition (ADAS)
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RNN Outperforms Baseline Algorithms

« 10-fold Nested Cross-Validation
« Evaluate prediction of diagnosis, ventricular volume, cognition (ADAS)

I Recurrent Neural Network (RNN) B Constant
I Support Vector Machine/Regression B Linear State Space
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TADPOLE Leaderboard

« Completely unseen data from ADNI
« 5th in the original challenge
 Currently 2nd out of 63 entries (as of June 3rd, 2020)

1 ADAS ADAS ADAS ADAS VENTS VENTS VENTS VENTS
FILE NAME MAUC BCA RANK MAE WES CPA RANK MAE WES CPA

s : 5.0 485 474 044 10.0 0.45 0.33 047 P XGBoost

CBIL-MinMFa
CBIL-MinMF1

EMC1-Std

VikingAl-Sigmoid

EMC1-Custom

https://tadpole.grand-challenge.org/D4_lLeaderboard/



https://tadpole.grand-challenge.org/D4_Leaderboard/

Tips When Reading DNN Papers
* Is it hype?

« If “deep learning” replaced with “logistic regression” in paper, is it still exciting?
« Why is it advantageous to use this particular DNN?

LOO [

« Sample size
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Varoquaux, Neurolmage, 2018



Tips When Reading DNN Papers
* Is it hype?

« If “deep learning” replaced with “logistic regression” in paper, is it still exciting?
« Why is it advantageous to use this particular DNN?

« Sample size
« Even 100 subjects => +10% error bars
« >>100 subjects for DNNs to be credible

« Many hyperparameters in DNNs
* |s it clear how the authors optimize their hyperparameters?

« |f authors manually tune hyperparameters, then inner-loop (nested) cross-
validation is bogus because information from tuning one fold will leak to another
fold (via the person tuning the hyperparameters)

« Recommended scheme: training, validation, test

« Training set to train model
« Validation set to tune hyperparameters
« Test set to perform final evaluation



Summary

« DNNs have revolutionized machine learning
« As models of the brain, DNNs have provided new mechanistic insights

 As tools for analyzing brain data, DNNs is promising

« DNNs excel in anatomical/lesion/tumor segmentation, image registration,

iImage modality/quality transfer
« Perhaps convolutional neural networks can better exploit nonlinearity in 3D ”structural”
data for “image-processing-type” problems?

 Currently still unclear about DNNs’ advantage when predicting
behavior/age/disease with anatomical T1 or fMRI

« Mixed results from competitions/challenges

« 3 Benchmarking studies (He et al., Neurolmage, 2020; Pervaiz et al., Neurolmage, 2020;
Schulz et al., biorxiv, 2020) suggest comparable performance between DNNs and
classical approaches

« 1 Benchmarking study (Abrol et al., biorxiv, 2020) suggest that other benchmarking
studies not making good use of DNNs
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