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Deep Neural Networks (DNNs) Achieve 
State-of-the-Art Performance in Many Fields

https://en.wikipedia.org/wiki/List
_of_Go_terms#Divine_move

DeepMind’s AlphaGo

Zou et al., 2019
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Classical ML Remains Competitive in Some Domains

Deep learning
Logistic Regression

Google Research, Scalable & 
accurate deep learning with 
electronic health records, 
NPJ Digital Medicine, 2018
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Commentary
Logistic regression (2 input features)

Deep learning
Logistic Regression



Applications of Deep Learning in Neuroscience
• Models of the brain

• Vision (Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014; Eickenberg
et al., 2017; Bashivan et al., 2019)

• Auditory perception (Kell et al., 2018)
• Reinforcement learning (Dabney et al., 2020)
• Grid cells / navigation (Banino et al., 2018)

• Tools to analyze brain data
• Lesion/tumor segmentation (Pinto et al., 2016; Havaei et al., 2017; Kamnitsas

et al., 2017b; Zhao et al., 2018)
• Anatomical segmentation (Wachinger et al., 2018; Zhao et al., 2018)
• Image modality/quality transfer (Bahrami et al., 2016; Nie et al., 2017; 

Blumberg
• Image registration (Yang et al., 2017; Dalca et al., 2018)
• Behavioral and disease prediction (Plis et al., 2014; van der Burgh et al., 2017; 

Vieira et al., 2017; Nguyen et al., 2018)



PAC challenge 2019 (https://www.photon-ai.com/pac2019)

Evidence From Challenges/Competitions
• Advantage: test set is truly hidden



Evidence From Challenges/Competitions

ABCD Fluid Intelligence Prediction Challenge 2019 
(https://sibis.sri.com/abcd-np-challenge/)

• Advantage: test set is truly hidden



Evidence From Challenges/Competitions
• Advantage: test set is truly hidden
• For anatomical/lesion segmentation challenges, deep learning has 

consistent winning track record (e.g., Choi et al., 2016; Kamnitsas et 
al., 2017, Li et al., 2018)
• For predicting behavior (e.g., fluid intelligence), age & diseases, deep 

learning has a more mixed record
• PAC brain age prediction 2019: winning algorithm uses DNN
• ABCD fluid intelligence prediction: 2019: winning algorithm uses kernel 

regression
• TADPOLE challenge 2019: winning algorithm uses XGBoost

• Disadvantage: winner based on point estimate of prediction accuracy, 
so winner might not be statistically better than next best team => 
benchmarking studies are important



Evidence From Benchmarking Studies
• ~10K subjects (UK Biobank + Human Connectome Project)
• Predict behavior & demographics with resting-state functional connectivity
• Kernel regression (KRR), fully-connected feedforward neural network (FNN), 

BrainNetCNN (Kawahara et al., 2017) & graph convolutional neural networks (GCNN)

He, NeuroImage, 2020

Sex Prediction in UK Biobank
(Test Set N = 1000)

KRR FNN GCNNBNetCNN

Tong He

KRR FNN GCNNBNetCNN

Fluid Intelligence Prediction in UK Biobank 
(Test Set N = 1000)



Evidence From Benchmarking Studies

He, NeuroImage, 2020

Tong He

Fluid Intelligence Accuracy (Correlation) In Test Set (N = 1000)
Hyperparameters Tuned With Validation Set (N = 1000)

• ~10K subjects (UK Biobank + Human Connectome Project)
• Predict behavior & demographics with resting-state functional connectivity
• Kernel regression (KRR), fully-connected feedforward neural network (FNN), 

BrainNetCNN (Kawahara et al., 2017) & graph convolutional neural networks (GCNN)



Evidence From Benchmarking Studies
• ~14K subjects (UK Biobank + Human Connectome Project + ABIDE + ACPI)
• Predict using resting-state functional connectivity

Pervaiz et al., NeuroImage, 2020



Evidence From Benchmarking Studies

Schulz et al., biorxiv

• Hypothesis: hard to exploit nonlinearity in MRI data?
• Computer Vision: Classical Linear < Classical Nonlinear < Deep Neural Networks

Sample Size

Standard Computer Vision Dataset (MNIST)

Classical Linear Methods (e.g., linear SVM)

Classical Nonlinear Methods (e.g., kernel SVM)
Deep Neural Networks
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Gets Better with 
larger sample size



Evidence From Benchmarking Studies

Schulz et al., biorxiv

• Hypothesis: hard to exploit nonlinearity in MRI data?
• Computer Vision: Classical Linear < Classical Nonlinear < Deep Neural Networks
• MRI: Almost equivalent performance across all methods

Sample Size
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10-class Age-Sex Prediction using T1-MRI

Gets Better with 
larger sample size

No difference across algorithms



Cautionary Tale
• Not claiming deep learning is not useful (we also use DNNs)
• TADPOLE Challenge (ADNI)

• Given 23 multimodal biomarkers at one or more timepoints
• Predict cognitive scores, brain atrophy, clinical diagnosis for every month 

(indefinitely) into the future
• Evaluation done for available time points (~5 years in the dataset)

• Challenge: lots of missing data
• CDR available in 70% timepoints
• Flortaucipir PET available in 16% timepoints

• Most studies assume all data present 
• Lose a lot of data
• Not realistic in practice

• Our strategy: deep recurrent neural network (RNN) can handle missing 
data and model individual’s longitudinal data

Minh Nguyen



• 10-fold Nested Cross-Validation
• Evaluate prediction of diagnosis, ventricular volume, cognition (ADAS) 

RNN Outperforms Baseline Algorithms 

Nguyen et al., PRNI, 2018
Nguyen et al., under revision

• Accuracy decreases further into the future
• Error bars increase with less data
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TADPOLE Leaderboard

https://tadpole.grand-challenge.org/D4_Leaderboard/

• Completely unseen data from ADNI
• 5th in the original challenge
• Currently 2nd out of 63 entries (as of June 3rd, 2020)

XGBoost

https://tadpole.grand-challenge.org/D4_Leaderboard/


Tips When Reading DNN Papers
• Is it hype?

• If “deep learning” replaced with “logistic regression” in paper, is it still exciting?
• Why is it advantageous to use this particular DNN?

• Sample size
• Even 100 subjects => ±10% error bars

Varoquaux, NeuroImage, 2018



Tips When Reading DNN Papers
• Is it hype?

• If “deep learning” replaced with “logistic regression” in paper, is it still exciting?
• Why is it advantageous to use this particular DNN?

• Sample size
• Even 100 subjects => ±10% error bars
• >>100 subjects for DNNs to be credible

• Many hyperparameters in DNNs
• Is it clear how the authors optimize their hyperparameters?
• If authors manually tune hyperparameters, then inner-loop (nested) cross-

validation is bogus because information from tuning one fold will leak to another 
fold (via the person tuning the hyperparameters)

• Recommended scheme: training, validation, test
• Training set to train model
• Validation set to tune hyperparameters
• Test set to perform final evaluation



Summary
• DNNs have revolutionized machine learning
• As models of the brain, DNNs have provided new mechanistic insights
• As tools for analyzing brain data, DNNs is promising
• DNNs excel in anatomical/lesion/tumor segmentation, image registration, 

image modality/quality transfer
• Perhaps convolutional neural networks can better exploit nonlinearity in 3D ”structural” 

data for “image-processing-type” problems?
• Currently still unclear about DNNs’ advantage when predicting 

behavior/age/disease with anatomical T1 or fMRI
• Mixed results from competitions/challenges
• 3 Benchmarking studies (He et al., NeuroImage, 2020; Pervaiz et al., NeuroImage, 2020; 

Schulz et al., biorxiv, 2020) suggest comparable performance between DNNs and 
classical approaches

• 1 Benchmarking study (Abrol et al., biorxiv, 2020) suggest that other benchmarking 
studies not making good use of DNNs
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WINRePo1
www.facebook.com/WiNRepository/

- www.winrepo.org
- over 1,100 profiles
- easy search
- recommendations

Repository for Women in Neuroscience

Support the project:
➢sign up
➢spread the word
➢submit recommendations


